That’s an interesting hypothesis. But how do you plan to test *that* hypothesis, without assuming it’s true ahead of time?

I’ve had an obsession dating back to original questions I began asking in my teens, which centres around the quantification of Ecological & Social Justice & Sustainability, using the principles of Ecological Systems Modelling & Thermodynamics, to create systems of non-species-biased, non-property/trade/currency-based, and non-hierarchical (aka anarchic) justice economics & politics … see >> http://www.open-empire.org for an overview.

I’m trying to find a way forward, but I’ve been working with a budget of $0 the whole time, and other difficulties like spinal damage & homelessness … so progress has been slower than I’d have liked, but I’m now working on a way to implement stages 0 & 1 of a 4 stage strategy, where the 4th stage is recursive – ie: a new instance of stage 4 is instantiated for every new project undertaken within the framework set up during stages 0 – 3. This work also involves me attempting to start coding the core systems on my own, though I do have some friends whom have volunteered to help, but to use that help I’ve gotta have more specific tasks for them to do.

I’m currently working on a modified blockchain that can handle the non-species-biased, non-property/trade/currency-based & non-hierarchical justice economics & politics … but there’s a lot of other elements I have to build too, and I’m basically having to teach myself everything as I go.

]]>Potential of Feynman Diagrams for Challenging Psychosocial Relationships? Comprehending the neglect of an unexplored possibility (http://www.laetusinpraesens.org/docs10s/feynman.php)

]]>I don’t know if you knew of this before, but you might like this:

http://arjunjainblog.wordpress.com/2013/04/14/phyllotaxy-a-serendipitous-surprise/ ]]>

A factory has some material inputs and processes them, using process A, into some material outputs. The owner skims a profit off the top. If he increases the amount of throughput, ie the number of times that process A is enacted per day, then he grows his profit. This is one of the dimensions of growth.

The other dimension of growth is where the owner of the plant invents a new process, B, which takes some of the original inputs and produces new outputs. This new process has higher value than the last one (like they way new technologies fetch a higher price). This is growing value. He can take some of the material that was originally allotted to process A and use it to start enacting process B. Thus, the total amount of resource is the same, but because B fetches a higher price, his bottom line grows.

This is how we can have growth, without increases in gross consumption.

]]>I am not sure if I am interested in a foundation or not. As a scientist, I want to have direct, intuitive access to the underlying reasoning of the mathematical structure which I will then use to describe my contact with nature. Furthermore, I want to see the most basic aspects of that structure well reflected in the visceral experience of observation. To have this, I’ve found I’ve had to touch on foundations simply because a theory, like the theory of categories, is always presented in some ambient reasoning structure. I want direct access, I suppose.

I think that categories, are a great start to a green mathematics. For instance, I have a dream of modelling economic growth with technological growth built right in at the bottom. This kind of growth is “network diagram growth”. What I mean is the following. When we draw a diagram, we start with a single line. Then we draw a dot. Then we draw another line. If we slow this process down and do it in stages, we have three diagrams. A dot, a line with a dot, and a line a dot and a line. Thus, drawing a diagram is the process of diagram growth.

This growth is highly structured. It is similar to Sorkin’s Causal growth dynamics and it is similar to Panangaden and Martin’s Domains as spacetimes (since the domain map is the evolving causal structure). It is different, in that the basic thing that is growing is a graph, not a partial order.

I have attempted to give precise rules for this growth. This has lead me to think about continuous functors, since the diagrams encode the axioms of particular categories.

In any case, “network diagram growth” is a technological growth,in that, a small diagram can be seen as a small category: one with very little going on. It’s like a factory that does one thing like grinding wheat into flour. Technological growth, happens when the factory owner realizes he can mix flour and water and then bake bread. That produces a new diagram and the old one maps into it in a structure preserving way. In this light, technology is understood as “learning about your past”. The larger diagram can be seen as a context in which to interpret one’s past.

This is “green”, in that, it is similar to how an organism might grow and change as when a seed grows into a tree. It is also “green”, in that, we now have a basic way to understand the value of economic growth. Namely, it allows us to understand our past. In that way, it is truly remarkable. Also, if we have good mathematical models of growth, perhaps we can have growth that is healthier for the planet. We can direct it at evolving the species, rather than just increasing the gross amount of resource we are consuming.

]]>