New IPCC Report (Part 6)

16 April, 2014

guest post by Steve Easterbrook

(6) We have to choose which future we want very soon.

In the previous IPCC reports, projections of future climate change were based on a set of scenarios that mapped out different ways in which human society might develop over the rest of this century, taking account of likely changes in population, economic development and technological innovation. However, none of the old scenarios took into account the impact of strong global efforts at climate mitigation. In other words, they all represented futures in which we don’t take serious action on climate change. For this report, the new ‘RCPs’ have been chosen to allow us to explore the choice we face.

This chart sums it up nicely. If we do nothing about climate change, we’re choosing a path that will look most like RCP8.5. Recall that this is the one where emissions keep rising just as they have done throughout the 20th century. On the other hand, if we get serious about curbing emissions, we’ll end up in a future that’s probably somewhere between RCP2.6 and RCP4.5 (the two blue lines). All of these futures give us a much warmer planet. All of these futures will involve many challenges as we adapt to life on a warmer planet. But by curbing emissions soon, we can minimize this future warming.

(Fig 12.5) Time series of global annual mean surface air temperature anomalies (relative to 1986–2005) from CMIP5 concentration-driven experiments. Projections are shown for each RCP for the multi model mean (solid lines) and the 5–95% range (±1.64 standard deviation) across the distribution of individual models (shading). Discontinuities at 2100 are due to different numbers of models performing the extension runs beyond the 21st century and have no physical meaning. Only one ensemble member is used from each model and numbers in the figure indicate the number of different models contributing to the different time periods. No ranges are given for the RCP6.0 projections beyond 2100 as only two models are available.

(Fig 12.5) Time series of global annual mean surface air temperature anomalies (relative to 1986–2005) from CMIP5 concentration-driven experiments. Projections are shown for each RCP for the multi model mean (solid lines) and the 5–95% range (±1.64 standard deviation) across the distribution of individual models (shading). Discontinuities at 2100 are due to different numbers of models performing the extension runs beyond the 21st century and have no physical meaning. Only one ensemble member is used from each model and numbers in the figure indicate the number of different models contributing to the different time periods. No ranges are given for the RCP6.0 projections beyond 2100 as only two models are available.

Note also that the uncertainty range (the shaded region) is much bigger for RCP8.5 than it is for the other scenarios. The more the climate changes beyond what we’ve experienced in the recent past, the harder it is to predict what will happen. We tend to use the difference across different models as an indication of uncertainty (the coloured numbers shows how many different models participated in each experiment). But there’s also the possibility of ‘unknown unknowns’—surprises that aren’t in the models, so the uncertainty range is likely to be even bigger than this graph shows.


You can download all of Climate Change 2013: The Physical Science Basis here. Click below to read any part of this series:

  1. The warming is unequivocal.
  2. Humans caused the majority of it.
  3. The warming is largely irreversible.
  4. Most of the heat is going into the oceans.
  5. Current rates of ocean acidification are unprecedented.
  6. We have to choose which future we want very soon.
  7. To stay below 2°C of warming, the world must become carbon negative.
  8. To stay below 2°C of warming, most fossil fuels must stay buried in the ground.

Climate Change 2013: The Physical Science Basis is also available chapter by chapter here:

  1. Front Matter
  2. Summary for Policymakers
  3. Technical Summary
    1. Supplementary Material

Chapters

  1. Introduction
  2. Observations: Atmosphere and Surface
    1. Supplementary Material
  3. Observations: Ocean
  4. Observations: Cryosphere
    1. Supplementary Material
  5. Information from Paleoclimate Archives
  6. Carbon and Other Biogeochemical Cycles
    1. Supplementary Material
  7. Clouds and Aerosols

    1. Supplementary Material
  8. Anthropogenic and Natural Radiative Forcing
    1. Supplementary Material
  9. Evaluation of Climate Models
  10. Detection and Attribution of Climate Change: from Global to Regional
    1. Supplementary Material
  11. Near-term Climate Change: Projections and Predictability
  12. Long-term Climate Change: Projections, Commitments and Irreversibility
  13. Sea Level Change
    1. Supplementary Material
  14. Climate Phenomena and their Relevance for Future Regional Climate Change
    1. Supplementary Material

Annexes

  1. Annex I: Atlas of Global and Regional Climate Projections
    1. Supplementary Material: RCP2.6, RCP4.5, RCP6.0, RCP8.5
  2. Annex II: Climate System Scenario Tables
  3. Annex III: Glossary
  4. Annex IV: Acronyms
  5. Annex V: Contributors to the WGI Fifth Assessment Report
  6. Annex VI: Expert Reviewers of the WGI Fifth Assessment Report

New IPCC Report (Part 5)

14 April, 2014

guest post by Steve Easterbrook

(5) Current rates of ocean acidification are unprecedented.

The IPCC report says:

The pH of seawater has decreased by 0.1 since the beginning of the industrial era, corresponding to a 26% increase in hydrogen ion concentration. […] It is virtually certain that the increased storage of carbon by the ocean will increase acidification in the future, continuing the observed trends of the past decades. […] Estimates of future atmospheric and oceanic carbon dioxide concentrations indicate that, by the end of this century, the average surface ocean pH could be lower than it has been for more than 50 million years.

(Fig SPM.7c) CMIP5 multi-model simulated time series from 1950 to 2100 for global mean ocean surface pH. Time series of projections and a measure of uncertainty (shading) are shown for scenarios RCP2.6 (blue) and RCP8.5 (red). Black (grey shading) is the modelled historical evolution using historical reconstructed forcings

(Fig SPM.7c) CMIP5 multi-model simulated time series from 1950 to 2100 for global mean ocean surface pH. Time series of projections and a measure of uncertainty (shading) are shown for scenarios RCP2.6 (blue) and RCP8.5 (red). Black (grey shading) is the modelled historical evolution using historical reconstructed forcings. [The numbers indicate the number of models used in each ensemble.]

Ocean acidification has sometimes been ignored in discussions about climate change, but it is a much simpler process, and is much easier to calculate (notice the uncertainty range on the graph above is much smaller than most of the other graphs). This graph shows the projected acidification in the best and worst case scenarios (RCP2.6 and RCP8.5). Recall that RCP8.5 is the “business as usual” future.

Note that this doesn’t mean the ocean will become acid. The ocean has always been slightly alkaline—well above the neutral value of pH 7. So “acidification” refers to a drop in pH, rather than a drop below pH 7. As this continues, the ocean becomes steadily less alkaline. Unfortunately, as the pH drops, the ocean stops being supersaturated for calcium carbonate. If it’s no longer supersaturated, anything made of calcium carbonate starts dissolving. Corals and shellfish can no longer form. If you kill these off, the entire ocean food chain is affected. Here’s what the IPCC report says:

Surface waters are projected to become seasonally corrosive to aragonite in parts of the Arctic and in some coastal upwelling systems within a decade, and in parts of the Southern Ocean within 1–3 decades in most scenarios. Aragonite, a less stable form of calcium carbonate, undersaturation becomes widespread in these regions at atmospheric CO2 levels of 500–600 ppm.


You can download all of Climate Change 2013: The Physical Science Basis here. Click below to read any part of this series:

  1. The warming is unequivocal.
  2. Humans caused the majority of it.
  3. The warming is largely irreversible.
  4. Most of the heat is going into the oceans.
  5. Current rates of ocean acidification are unprecedented.
  6. We have to choose which future we want very soon.
  7. To stay below 2°C of warming, the world must become carbon negative.
  8. To stay below 2°C of warming, most fossil fuels must stay buried in the ground.

Climate Change 2013: The Physical Science Basis is also available chapter by chapter here:

  1. Front Matter
  2. Summary for Policymakers
  3. Technical Summary
    1. Supplementary Material

Chapters

  1. Introduction
  2. Observations: Atmosphere and Surface
    1. Supplementary Material
  3. Observations: Ocean
  4. Observations: Cryosphere
    1. Supplementary Material
  5. Information from Paleoclimate Archives
  6. Carbon and Other Biogeochemical Cycles
    1. Supplementary Material
  7. Clouds and Aerosols

    1. Supplementary Material
  8. Anthropogenic and Natural Radiative Forcing
    1. Supplementary Material
  9. Evaluation of Climate Models
  10. Detection and Attribution of Climate Change: from Global to Regional
    1. Supplementary Material
  11. Near-term Climate Change: Projections and Predictability
  12. Long-term Climate Change: Projections, Commitments and Irreversibility
  13. Sea Level Change
    1. Supplementary Material
  14. Climate Phenomena and their Relevance for Future Regional Climate Change
    1. Supplementary Material

Annexes

  1. Annex I: Atlas of Global and Regional Climate Projections
    1. Supplementary Material: RCP2.6, RCP4.5, RCP6.0, RCP8.5
  2. Annex II: Climate System Scenario Tables
  3. Annex III: Glossary
  4. Annex IV: Acronyms
  5. Annex V: Contributors to the WGI Fifth Assessment Report
  6. Annex VI: Expert Reviewers of the WGI Fifth Assessment Report

New IPCC Report (Part 4)

11 April, 2014

guest post by Steve Easterbrook

(4) Most of the heat is going into the oceans

The oceans have a huge thermal mass compared to the atmosphere and land surface. They act as the planet’s heat storage and transportation system, as the ocean currents redistribute the heat. This is important because if we look at the global surface temperature as an indication of warming, we’re only getting some of the picture. The oceans act as a huge storage heater, and will continue to warm up the lower atmosphere (no matter what changes we make to the atmosphere in the future).

(Box 3.1 Fig 1) Plot of energy accumulation in ZJ (1 ZJ = 1021 J) within distinct components of Earth’s climate system relative to 1971 and from 1971–2010 unless otherwise indicated. See text for data sources. Ocean warming (heat content change) dominates, with the upper ocean (light blue, above 700 m) contributing more than the deep ocean (dark blue, below 700 m; including below 2000 m estimates starting from 1992). Ice melt (light grey; for glaciers and ice caps, Greenland and Antarctic ice sheet estimates starting from 1992, and Arctic sea ice estimate from 1979–2008); continental (land) warming (orange); and atmospheric warming (purple; estimate starting from 1979) make smaller contributions. Uncertainty in the ocean estimate also dominates the total uncertainty (dot-dashed lines about the error from all five components at 90% confidence intervals).

(Box 3.1 Fig 1) Plot of energy accumulation in zettajoules within distinct components of Earth’s climate system relative to 1971 and from 1971–2010 unless otherwise indicated. Ocean warming (heat content change) dominates, with the upper ocean (light blue, above 700 m) contributing more than the deep ocean (dark blue, below 700 m; including below 2000 m estimates starting from 1992). Ice melt (light grey; for glaciers and ice caps, Greenland and Antarctic ice sheet estimates starting from 1992, and Arctic sea ice estimate from 1979–2008); continental (land) warming (orange); and atmospheric warming (purple; estimate starting from 1979) make smaller contributions. Uncertainty in the ocean estimate also dominates the total uncertainty (dot-dashed lines about the error from all five components at 90% confidence intervals).

Note the relationship between this figure (which shows where the heat goes) and the figure from Part 2 that showed change in cumulative energy budget from different sources:

The Earth's energy budget from 1970 to 2011. Cumulative energy flux (in zettajoules) into the Earth system from well-mixed and short-lived greenhouse gases, solar forcing, changes in tropospheric aerosol forcing, volcanic forcing and surface albedo, (relative to 1860–1879) are shown by the coloured lines and these are added to give the cumulative energy inflow (black; including black carbon on snow and combined contrails and contrail induced cirrus, not shown separately).

(Box 13.1 fig 1) The Earth’s energy budget from 1970 to 2011. Cumulative energy flux (in zettajoules) into the Earth system from well-mixed and short-lived greenhouse gases, solar forcing, changes in tropospheric aerosol forcing, volcanic forcing and surface albedo, (relative to 1860–1879) are shown by the coloured lines and these are added to give the cumulative energy inflow (black; including black carbon on snow and combined contrails and contrail induced cirrus, not shown separately).

Both graphs show zettajoules accumulating over about the same period (1970-2011). But the graph from Part 1 has a cumulative total just short of 800 zettajoules by the end of the period, while today’s new graph shows the earth storing “only” about 300 zettajoules of this. Where did the remaining energy go? Because the earth’s temperature rose during this period, it also lost increasingly more energy back into space. When greenhouse gases trap heat, the earth’s temperature keeps rising until outgoing energy and incoming energy are in balance again.


You can download all of Climate Change 2013: The Physical Science Basis here. Click below to read any part of this series:

  1. The warming is unequivocal.
  2. Humans caused the majority of it.
  3. The warming is largely irreversible.
  4. Most of the heat is going into the oceans.
  5. Current rates of ocean acidification are unprecedented.
  6. We have to choose which future we want very soon.
  7. To stay below 2°C of warming, the world must become carbon negative.
  8. To stay below 2°C of warming, most fossil fuels must stay buried in the ground.

Climate Change 2013: The Physical Science Basis is also available chapter by chapter here:

  1. Front Matter
  2. Summary for Policymakers
  3. Technical Summary
    1. Supplementary Material

Chapters

  1. Introduction
  2. Observations: Atmosphere and Surface
    1. Supplementary Material
  3. Observations: Ocean
  4. Observations: Cryosphere
    1. Supplementary Material
  5. Information from Paleoclimate Archives
  6. Carbon and Other Biogeochemical Cycles
    1. Supplementary Material
  7. Clouds and Aerosols

    1. Supplementary Material
  8. Anthropogenic and Natural Radiative Forcing
    1. Supplementary Material
  9. Evaluation of Climate Models
  10. Detection and Attribution of Climate Change: from Global to Regional
    1. Supplementary Material
  11. Near-term Climate Change: Projections and Predictability
  12. Long-term Climate Change: Projections, Commitments and Irreversibility
  13. Sea Level Change
    1. Supplementary Material
  14. Climate Phenomena and their Relevance for Future Regional Climate Change
    1. Supplementary Material

Annexes

  1. Annex I: Atlas of Global and Regional Climate Projections
    1. Supplementary Material: RCP2.6, RCP4.5, RCP6.0, RCP8.5
  2. Annex II: Climate System Scenario Tables
  3. Annex III: Glossary
  4. Annex IV: Acronyms
  5. Annex V: Contributors to the WGI Fifth Assessment Report
  6. Annex VI: Expert Reviewers of the WGI Fifth Assessment Report

New IPCC Report (Part 3)

10 April, 2014

guest post by Steve Easterbrook

(3) The warming is largely irreversible

The summary for policymakers says:

A large fraction of anthropogenic climate change resulting from CO2 emissions is irreversible on a multi-century to millennial time scale, except in the case of a large net removal of CO2 from the atmosphere over a sustained period. Surface temperatures will remain approximately constant at elevated levels for many centuries after a complete cessation of net anthropogenic CO2 emissions.

(Fig 12.43) Results from 1,000 year simulations from EMICs on the 4 RCPs up to the year 2300, followed by constant composition until 3000.

(Fig 12.43) Results from 1,000 year simulations from EMICs on the 4 RCPs up to the year 2300, followed by constant composition until 3000.

The conclusions about irreversibility of climate change are greatly strengthened from the previous assessment report, as recent research has explored this in much more detail. The problem is that a significant fraction of our greenhouse gas emissions stay in the atmosphere for thousands of years, so even if we stop emitting them altogether, they hang around, contributing to more warming. In simple terms, whatever peak temperature we reach, we’re stuck at for millennia, unless we can figure out a way to artificially remove massive amounts of CO2 from the atmosphere.

The graph is the result of an experiment that runs (simplified) models for a thousand years into the future. The major climate models are generally too computational expensive to be run for such a long simulation, so these experiments use simpler models, so-called EMICS (Earth system Models of Intermediate Complexity).

The four curves in this figure correspond to four “Representative Concentration Pathways”, which map out four ways in which the composition of the atmosphere is likely to change in the future. These four RCPs were picked to capture four possible futures: two in which there is little to no coordinated action on reducing global emissions (worst case—RCP8.5 and best case—RCP6) and two on which there is serious global action on climate change (worst case—RCP4.5 and best case—RCP 2.6). A simple way to think about them is as follows. RCP8.5 represents ‘business as usual’—strong economic development for the rest of this century, driven primarily by dependence on fossil fuels. RCP6 represents a world with no global coordinated climate policy, but where lots of localized clean energy initiatives do manage to stabilize emissions by the latter half of the century. RCP4.5 represents a world that implements strong limits on fossil fuel emissions, such that greenhouse gas emissions peak by mid-century and then start to fall. RCP2.6 is a world in which emissions peak in the next few years, and then fall dramatically, so that the world becomes carbon neutral by about mid-century.

Note that in RCP2.6 the temperature does fall, after reaching a peak just below 2°C of warming over pre-industrial levels. That’s because RCP2.6 is a scenario in which concentrations of greenhouse gases in the atmosphere start to fall before the end of the century. This is only possible if we reduce global emissions so fast that we achieve carbon neutrality soon after mid-century, and then go carbon negative. By carbon negative, I mean that globally, each year, we remove more CO2 from the atmosphere than we add. Whether this is possible is an interesting question. But even if it is, the model results show there is no time within the next thousand years when it is anywhere near as cool as it is today.


You can download all of Climate Change 2013: The Physical Science Basis here. Click below to read any part of this series:

  1. The warming is unequivocal.
  2. Humans caused the majority of it.
  3. The warming is largely irreversible.
  4. Most of the heat is going into the oceans.
  5. Current rates of ocean acidification are unprecedented.
  6. We have to choose which future we want very soon.
  7. To stay below 2°C of warming, the world must become carbon negative.
  8. To stay below 2°C of warming, most fossil fuels must stay buried in the ground.
  1. Front Matter
  2. Summary for Policymakers
  3. Technical Summary
    1. Supplementary Material

Chapters

  1. Introduction
  2. Observations: Atmosphere and Surface
    1. Supplementary Material
  3. Observations: Ocean
  4. Observations: Cryosphere
    1. Supplementary Material
  5. Information from Paleoclimate Archives
  6. Carbon and Other Biogeochemical Cycles
    1. Supplementary Material
  7. Clouds and Aerosols

    1. Supplementary Material
  8. Anthropogenic and Natural Radiative Forcing
    1. Supplementary Material
  9. Evaluation of Climate Models
  10. Detection and Attribution of Climate Change: from Global to Regional
    1. Supplementary Material
  11. Near-term Climate Change: Projections and Predictability
  12. Long-term Climate Change: Projections, Commitments and Irreversibility
  13. Sea Level Change
    1. Supplementary Material
  14. Climate Phenomena and their Relevance for Future Regional Climate Change
    1. Supplementary Material

Annexes

  1. Annex I: Atlas of Global and Regional Climate Projections
    1. Supplementary Material: RCP2.6, RCP4.5, RCP6.0, RCP8.5
  2. Annex II: Climate System Scenario Tables
  3. Annex III: Glossary
  4. Annex IV: Acronyms
  5. Annex V: Contributors to the WGI Fifth Assessment Report
  6. Annex VI: Expert Reviewers of the WGI Fifth Assessment Report

New IPCC Report (Part 2)

9 April, 2014

guest post by Steve Easterbrook

(2) Humans caused the majority of it

The summary for policymakers says:

It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century.

The Earth's energy budget from 1970 to 2011. Cumulative energy flux (in zettaJoules!) into the Earth system from well-mixed and short-lived greenhouse gases, solar forcing, changes in tropospheric aerosol forcing, volcanic forcing and surface albedo, (relative to 1860–1879) are shown by the coloured lines and these are added to give the cumulative energy inflow (black; including black carbon on snow and combined contrails and contrail induced cirrus, not shown separately).

(Box 13.1 fig 1) The Earth’s energy budget from 1970 to 2011. Cumulative energy flux (in zettajoules!) into the Earth system from well-mixed and short-lived greenhouse gases, solar forcing, changes in tropospheric aerosol forcing, volcanic forcing and surface albedo, (relative to 1860–1879) are shown by the coloured lines and these are added to give the cumulative energy inflow (black; including black carbon on snow and combined contrails and contrail induced cirrus, not shown separately).

This chart summarizes the impact of different drivers of warming and/or cooling, by showing the total cumulative energy added to the earth system since 1970 from each driver. Note that the chart is in zettajoules (1021J). For comparison, one zettajoule is about the energy that would be released from 200 million bombs of the size of the one dropped on Hiroshima. The world’s total annual global energy consumption is about 0.5 zettajoule.

Long lived greenhouse gases, such as CO2, contribute the majority of the warming (the purple line). Aerosols, such as particles of industrial pollution, block out sunlight and cause some cooling (the dark blue line), but nowhere near enough to offset the warming from greenhouse gases. Note that aerosols have the largest uncertainty bar; much of the remaining uncertainty about the likely magnitude of future climate warming is due to uncertainty about how much of the warming might be offset by aerosols. The uncertainty on the aerosols curve is, in turn, responsible for most of the uncertainty on the black line, which shows the total effect if you add up all the individual contributions.

The graph also puts into perspective some of other things that people like to blame for climate change, including changes in energy received from the sun (‘solar’), and the impact of volcanoes. Changes in the sun (shown in orange) are tiny compared to greenhouse gases, but do show a very slight warming effect. Volcanoes have a larger (cooling) effect, but it is short-lived. There were two major volcanic eruptions in this period, El Chichón in 1982 and and Pinatubo in 1992. Each can be clearly seen in the graph as an immediate cooling effect, which then tapers off after a a couple of years.


You can download all of Climate Change 2013: The Physical Science Basis here. Click below to read any part of this series:

  1. The warming is unequivocal.
  2. Humans caused the majority of it.
  3. The warming is largely irreversible.
  4. Most of the heat is going into the oceans.
  5. Current rates of ocean acidification are unprecedented.
  6. We have to choose which future we want very soon.
  7. To stay below 2°C of warming, the world must become carbon negative.
  8. To stay below 2°C of warming, most fossil fuels must stay buried in the ground.

Climate Change 2013: The Physical Science Basis is also available chapter by chapter here:

  1. Front Matter
  2. Summary for Policymakers
  3. Technical Summary
    1. Supplementary Material

Chapters

  1. Introduction
  2. Observations: Atmosphere and Surface
    1. Supplementary Material
  3. Observations: Ocean
  4. Observations: Cryosphere
    1. Supplementary Material
  5. Information from Paleoclimate Archives
  6. Carbon and Other Biogeochemical Cycles
    1. Supplementary Material
  7. Clouds and Aerosols

    1. Supplementary Material
  8. Anthropogenic and Natural Radiative Forcing
    1. Supplementary Material
  9. Evaluation of Climate Models
  10. Detection and Attribution of Climate Change: from Global to Regional
    1. Supplementary Material
  11. Near-term Climate Change: Projections and Predictability
  12. Long-term Climate Change: Projections, Commitments and Irreversibility
  13. Sea Level Change
    1. Supplementary Material
  14. Climate Phenomena and their Relevance for Future Regional Climate Change
    1. Supplementary Material

Annexes

  1. Annex I: Atlas of Global and Regional Climate Projections
    1. Supplementary Material: RCP2.6, RCP4.5, RCP6.0, RCP8.5
  2. Annex II: Climate System Scenario Tables
  3. Annex III: Glossary
  4. Annex IV: Acronyms
  5. Annex V: Contributors to the WGI Fifth Assessment Report
  6. Annex VI: Expert Reviewers of the WGI Fifth Assessment Report

New IPCC Report (Part 1)

7 April, 2014

guest post by Steve Easterbrook

In October, I trawled through the final draft of this report, which was released at that time:

• Intergovernmental Panel on Climate Change (IPCC), Climate Change 2013: The Physical Science Basis.

Here’s what I think are its key messages:

  1. The warming is unequivocal.
  2. Humans caused the majority of it.
  3. The warming is largely irreversible.
  4. Most of the heat is going into the oceans.
  5. Current rates of ocean acidification are unprecedented.
  6. We have to choose which future we want very soon.
  7. To stay below 2°C of warming, the world must become carbon negative.
  8. To stay below 2°C of warming, most fossil fuels must stay buried in the ground.

I’ll talk about the first of these here, and the rest in future parts—click to get to any part you want. But before I start, a little preamble.

The IPCC was set up in 1988 as a UN intergovernmental body to provide an overview of the science. Its job is to assess what the peer-reviewed science says, in order to inform policymaking, but it is not tasked with making specific policy recommendations. The IPCC and its workings seem to be widely misunderstood in the media. The dwindling group of people who are still in denial about climate change particularly like to indulge in IPCC-bashing, which seems like a classic case of ‘blame the messenger’. The IPCC itself has a very small staff (no more than a dozen or so people). However, the assessment reports are written and reviewed by a very large team of scientists (several thousands), all of whom volunteer their time to work on the reports. The scientists are are organised into three working groups: WG1 focuses on the physical science basis, WG2 focuses on impacts and climate adaptation, and WG3 focuses on how climate mitigation can be achieved.

In October, the WG1 report was released as a final draft, although it was accompanied by bigger media event around the approval of the final wording on the WG1 “Summary for Policymakers”. The final version of the full WG1 report, plus the WG2 and WG3 reports, have come out since then.

I wrote about the WG1 draft in October, but John has solicited this post for Azimuth only now. By now, the draft I’m talking about here has undergone some minor editing/correcting, and some of the figures might have ended up re-drawn. Even so, most of the text is unlikely to have changed, and the major findings can be considered final.

In this post and the parts to come I’ll give my take on the most important findings, along with a key figure to illustrate each.


(1) The warming is unequivocal

The text of the summary for policymakers says:

Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, sea level has risen, and the concentrations of greenhouse gases have increased.

Observed globally averaged combined land and ocean surface temperature anomaly 1850-2012. The top panel shows the annual values; the bottom panel shows decadal means. (Note: Anomalies are relative to the mean of 1961-1990).

(Fig SPM.1) Observed globally averaged combined land and ocean surface temperature anomaly 1850-2012. The top panel shows the annual values; the bottom panel shows decadal means. (Note: Anomalies are relative to the mean of 1961-1990).

Unfortunately, there has been much play in the press around a silly idea that the warming has “paused” in the last decade. If you squint at the last few years of the top graph, you might be able to convince yourself that the temperature has been nearly flat for a few years, but only if you cherry pick your starting date, and use a period that’s too short to count as climate. When you look at it in the context of an entire century and longer, such arguments are clearly just wishful thinking.

The other thing to point out here is that the rate of warming is unprecedented:

With very high confidence, the current rates of CO2, CH4 and N2O rise in atmospheric concentrations and the associated radiative forcing are unprecedented with respect to the highest resolution ice core records of the last 22,000 years

and there is

medium confidence that the rate of change of the observed greenhouse gas rise is also unprecedented compared with the lower resolution records of the past 800,000 years.

In other words, there is nothing in any of the ice core records that is comparable to what we have done to the atmosphere over the last century. The earth has warmed and cooled in the past due to natural cycles, but never anywhere near as fast as modern climate change.


You can download all of Climate Change 2013: The Physical Science Basis here. It’s also available chapter by chapter here:

  1. Front Matter
  2. Summary for Policymakers
  3. Technical Summary
    1. Supplementary Material

Chapters

  1. Introduction
  2. Observations: Atmosphere and Surface
    1. Supplementary Material
  3. Observations: Ocean
  4. Observations: Cryosphere
    1. Supplementary Material
  5. Information from Paleoclimate Archives
  6. Carbon and Other Biogeochemical Cycles
    1. Supplementary Material
  7. Clouds and Aerosols

    1. Supplementary Material
  8. Anthropogenic and Natural Radiative Forcing
    1. Supplementary Material
  9. Evaluation of Climate Models
  10. Detection and Attribution of Climate Change: from Global to Regional
    1. Supplementary Material
  11. Near-term Climate Change: Projections and Predictability
  12. Long-term Climate Change: Projections, Commitments and Irreversibility
  13. Sea Level Change
    1. Supplementary Material
  14. Climate Phenomena and their Relevance for Future Regional Climate Change
    1. Supplementary Material

Annexes

  1. Annex I: Atlas of Global and Regional Climate Projections
    1. Supplementary Material: RCP2.6, RCP4.5, RCP6.0, RCP8.5
  2. Annex II: Climate System Scenario Tables
  3. Annex III: Glossary
  4. Annex IV: Acronyms
  5. Annex V: Contributors to the WGI Fifth Assessment Report
  6. Annex VI: Expert Reviewers of the WGI Fifth Assessment Report

Civilizational Collapse (Part 1)

25 March, 2014

This story caught my attention, since a lot of people are passing it around:

• Nafeez Ahmed, NASA-funded study: industrial civilisation headed for ‘irreversible collapse’?, Earth Insight, blog on The Guardian, 14 March 2014.

Sounds dramatic! But notice the question mark in the title. The article says that “global industrial civilisation could collapse in coming decades due to unsustainable resource exploitation and increasingly unequal wealth distribution.” But with the word “could” in there, who could possibly argue? It’s certainly possible. What’s the actual news here?

It’s about a new paper that’s been accepted the Elsevier journal Ecological Economics. Since this paper has not been published, and I don’t even know the title, it’s hard to get details yet. According to Nafeez Ahmed,

The research project is based on a new cross-disciplinary ‘Human And Nature DYnamical’ (HANDY) model, led by applied mathematician Safa Motesharrei of the US National Science Foundation-supported National Socio-Environmental Synthesis Center, in association with a team of natural and social scientists.

So I went to Safa Motesharrei‘s webpage. It says he’s a grad student getting his PhD at the Socio-Environmental Synthesis Center, working with a team of people including:

Eugenia Kalnay (atmospheric science)
James Yorke (mathematics)
Matthias Ruth (public policy)
Victor Yakovenko (econophysics)
Klaus Hubacek (geography)
Ning Zeng (meteorology)
Fernando Miralles-Wilhelm (hydrology).

I was able to find this paper draft:

• Safa Motesharri, Jorge Rivas and Eugenia Kalnay, A minimal model for human and nature interaction, 13 November 2012.

I’m not sure how this is related to the paper discussed by Nafeez Ahmed, but it includes some (though not all) of the passages quoted by him, and it describes the HANDY model. It’s an extremely simple model, so I’ll explain it to you.

But first let me quote a bit more of the Guardian article, so you can see why it’s attracting attention:

By investigating the human-nature dynamics of these past cases of collapse, the project identifies the most salient interrelated factors which explain civilisational decline, and which may help determine the risk of collapse today: namely, Population, Climate, Water, Agriculture, and Energy.

These factors can lead to collapse when they converge to generate two crucial social features: “the stretching of resources due to the strain placed on the ecological carrying capacity”; and “the economic stratification of society into Elites [rich] and Masses (or “Commoners”) [poor]” These social phenomena have played “a central role in the character or in the process of the collapse,” in all such cases over “the last five thousand years.”

Currently, high levels of economic stratification are linked directly to overconsumption of resources, with “Elites” based largely in industrialised countries responsible for both:

“… accumulated surplus is not evenly distributed throughout society, but rather has been controlled by an elite. The mass of the population, while producing the wealth, is only allocated a small portion of it by elites, usually at or just above subsistence levels.”

The study challenges those who argue that technology will resolve these challenges by increasing efficiency:

“Technological change can raise the efficiency of resource use, but it also tends to raise both per capita resource consumption and the scale of resource extraction, so that, absent policy effects, the increases in consumption often compensate for the increased efficiency of resource use.”

Productivity increases in agriculture and industry over the last two centuries has come from “increased (rather than decreased) resource throughput,” despite dramatic efficiency gains over the same period.

Modelling a range of different scenarios, Motesharri and his colleagues conclude that under conditions “closely reflecting the reality of the world today… we find that collapse is difficult to avoid.” In the first of these scenarios, civilisation:

“…. appears to be on a sustainable path for quite a long time, but even using an optimal depletion rate and starting with a very small number of Elites, the Elites eventually consume too much, resulting in a famine among Commoners that eventually causes the collapse of society. It is important to note that this Type-L collapse is due to an inequality-induced famine that causes a loss of workers, rather than a collapse of Nature.”

Another scenario focuses on the role of continued resource exploitation, finding that “with a larger depletion rate, the decline of the Commoners occurs faster, while the Elites are still thriving, but eventually the Commoners collapse completely, followed by the Elites.”

In both scenarios, Elite wealth monopolies mean that they are buffered from the most “detrimental effects of the environmental collapse until much later than the Commoners”, allowing them to “continue ‘business as usual’ despite the impending catastrophe.” The same mechanism, they argue, could explain how “historical collapses were allowed to occur by elites who appear to be oblivious to the catastrophic trajectory (most clearly apparent in the Roman and Mayan cases).”

Applying this lesson to our contemporary predicament, the study warns that:

“While some members of society might raise the alarm that the system is moving towards an impending collapse and therefore advocate structural changes to society in order to avoid it, Elites and their supporters, who opposed making these changes, could point to the long sustainable trajectory ‘so far’ in support of doing nothing.”

However, the scientists point out that the worst-case scenarios are by no means inevitable, and suggest that appropriate policy and structural changes could avoid collapse, if not pave the way toward a more stable civilisation.

The two key solutions are to reduce economic inequality so as to ensure fairer distribution of resources, and to dramatically reduce resource consumption by relying on less intensive renewable resources and reducing population growth:

“Collapse can be avoided and population can reach equilibrium if the per capita rate of depletion of nature is reduced to a sustainable level, and if resources are distributed in a reasonably equitable fashion.”

The HANDY model

So what’s the model?

It’s 4 ordinary differential equations:

\dot{x}_C = \beta_C x_C - \alpha_C x_C

\dot{x}_E = \beta_E x_E - \alpha_E x_E

\dot{y} = \gamma y (\lambda - y) - \delta x_C y

\dot{w} = \delta x_C y - C_C - C_E

where:

x_C is the population of the commoners or masses

x_E is the population of the elite

y represents natural resources

w represents wealth

The authors say that

Natural resources exist in three forms: nonrenewable stocks (fossil fuels, mineral deposits, etc), renewable stocks (forests, soils, aquifers), and flows (wind, solar radiation, rivers). In future versions of HANDY, we plan to disaggregate Nature into these three different forms, but for simpli cation in this version, we have adopted a single formulation intended to represent an amalgamation of the three forms.

So, it’s possible that the paper to be published in Ecological Economics treats natural resources using three variables instead of just one.

Now let’s look at the equations one by one:

\dot{x}_C = \beta_C x_C - \alpha_C x_C

This looks weird at first, but \beta_C and \alpha_C aren’t both constants, which would be redundant. \beta_C is a constant birth rate for commoners, while \alpha_C, the death rate for commoners, is a function of wealth.

Similarly, in

\dot{x}_E = \beta_E x_E - \alpha_E x_E

\beta_E is a constant birth rate for the elite, while \alpha_E, the death rate for the elite, is a function of wealth. The death rate is different for the elite and commoners:

For both the elite and commoners, the death rate drops linearly with increasing wealth from its maximum value \alpha_M to its minimum values \alpha_m. But it drops faster for the elite, of course! For the commoners it reaches its minimum when the wealth w reaches some value w_{th}, but for the elite it reaches its minimum earlier, when w = w_{th}/\kappa, where \kappa is some number bigger than 1.

Next, how do natural resources change?

\dot{y} = \gamma y (\lambda - y) - \delta x_C y

The first part of this equation:

\dot{y} = \gamma y (\lambda - y)

describes how natural resources renew themselves if left alone. This is just the logistic equation, famous in models of population growth. Here \lambda is the equilibrium level of natural resources, while \gamma is another number that helps say how fast the resources renew themselves. Solutions of the logistic equation look like this:

But the whole equation

\dot{y} = \gamma y (\lambda - y) - \delta x_C y

has a term saying that natural resources get used up at a rate proportional to the population of commoners x_C times the amount of natural resources y. \delta is just a constant of proportionality.

It’s curious that the population of elites doesn’t affect the depletion of natural resources, and also that doubling the amount of natural resources doubles the rate at which they get used up. Regarding the first issue, the authors offer this explanation:

The depletion term includes a rate of depletion per worker, \delta, and is proportional to both Nature and the number of workers. However, the economic activity of Elites is modeled to represent executive, management, and supervisory functions, but not engagement in the direct extraction of resources, which is done by Commoners. Thus, only Commoners produce.

I didn’t notice a discussion of the second issue.

Finally, the change in the amount of wealth is described by this equation:

\dot{w} = \delta x_C y - C_C - C_E

The first term at right precisely matches the depletion of natural resources in the previous equation, but with the opposite sign: natural resources are getting turned into ‘wealth’. C_C describes consumption by commoners and C_E describes consumption by the elite. These are both functions of wealth, a bit like the death rates… but as you’d expect increasing wealth increases consumption:

For both the elite and commoners, consumption grows linearly with increasing wealth until wealth reaches the critical level w_{th}. But it grows faster for the elites, and reaches a higher level.

So, that’s the model… at least in this preliminary version of the paper.

Some solutions of the model

There are many parameters in this model, and many different things can happen depending on their values and the initial conditions. The paper investigates many different scenarios. I don’t have the energy to describe them all, so I urge you to skim it and look at the graphs.

I’ll just show you three. Here is one that Nafeez Ahmed mentioned, where civilization

appears to be on a sustainable path for quite a long time, but even using an optimal depletion rate and starting with a very small number of Elites, the Elites eventually consume too much, resulting in a famine among Commoners that eventually causes the collapse of society.

I can see why Ahmed would like to talk about this scenario: he’s written a book called A User’s Guide to the Crisis of Civilization and How to Save It. Clearly it’s worth putting some thought into risks of this sort. But how likely is this particular scenario compared to others? For that we’d need to think hard about how well this model matches reality.

It’s obviously a crude simplification of an immensely complex and unknowable system: the whole civilization on this planet. That doesn’t mean it’s fundamentally wrong! Its predictions could still be qualitatively correct. But to gain confidence in this, we’d need material that is not made in the draft paper I’ve seen. It says:

The scenarios most closely reflecting the reality of our world today are found in the third group of experiments (see section 5.3), where we introduced economic strati cation. Under such conditions,
we find that collapse is difficult to avoid.

But it would be nice to see a more careful approach to setting model parameters, justifying the simplifications built into the model, exploring what changes when some simplifications are reduced, and so on.

Here’s a happier scenario, where the parameters are chosen differently:

The main difference is that the depletion of resources per commoner, \delta, is smaller.

And here’s yet another, featuring cycles of prosperity, overshoot and collapse:

Tentative conclusions

I hope you see that I’m neither trying to ‘shoot down’ this model nor defend it. I’m just trying to understand it.

I think it’s very important—and fun—to play around with models like this, keep refining them, comparing them against each other, and using them as tools to help our thinking. But I’m not very happy that Nafeez Ahmed called this piece of work a “highly credible wake-up call” without giving us any details about what was actually done.

I don’t expect blog articles on the Guardian to feature differential equations! But it would be great if journalists who wrote about new scientific results would provide a link to the actual work, so people who want to could dig deeper can do so. Don’t make us scour the internet looking for clues.

And scientists: if your results are potentially important, let everyone actually see them! If you think civilization could be heading for collapse, burying your evidence and your recommendations for avoiding this calamity in a closed-access Elsevier journal is not the optimal strategy to deal with the problem.

There’s been a whole side-battle over whether NASA actually funded this study:

• Keith Kloor, About that popular Guardian story on the collapse of industrial civilization, Collide-A-Scape, blog on Discover, March 21, 2014.

• Nafeez Ahmed, Did NASA fund ‘civilisation collapse’ study, or not?, Earth Insight, blog on The Guardian, 21 March 2014.

But that’s very boring compared to fun of thinking about the model used in this study… and the challenging, difficult business of trying to think clearly about the risks of civilizational collapse.

Addendum

The paper is now freely available here:

• Safa Motesharri, Jorge Rivas and Eugenia Kalnay, Human and nature dynamics (HANDY): modeling inequality and use of resources in the collapse or sustainability of societies, Ecological Economics 101 (2014), 90–102.


Follow

Get every new post delivered to your Inbox.

Join 3,095 other followers