Interview (Part 2)

Greg Bernhardt runs an excellent website for discussing physics, math and other topics, called Physics Forums. He recently interviewed me there. Since I used this opportunity to explain a bit about the Azimuth Project and network theory, I thought I’d reprint the interview here. Here is Part 2.

 

Tell us about your experience with past projects like “This Week’s Finds in Mathematical Physics”.

I was hired by U.C. Riverside back in 1989. I was lonely and bored, since Lisa was back on the other coast. So, I spent a lot of evenings on the computer.

We had the internet back then—this was shortly after stone tools were invented—but the world-wide web hadn’t caught on yet. So, I would read and write posts on “newsgroups” using a program called a “news server”. You have to imagine me sitting in front of an old green­-on­-black cathode ray tube monitor with a large floppy disk drive, firing up the old modem to hook up to the internet.

In 1993, I started writing a series of posts on the papers I’d read. I called it “This Week’s Finds in Mathematical Physics”, which was a big mistake, because I couldn’t really write one every week. After a while I started using it to explain lots of topics in math and physics. I wrote 300 issues. Then I quit in 2010, when I started taking climate change seriously.

Share with us a bit about your current projects like Azimuth and the n­-Café.

The n­-Category Café is a blog I started with Urs Schreiber and the philosopher David Corfield back in 2006, when all three of us realized that n­-categories are the big wave that math is riding right now. We have a bunch more bloggers on the team now. But the n­-Café lost some steam when I quit work in n­-categories and Urs started putting most of his energy into two related projects: a wiki called the nLab and a discussion group called the nForum.

In 2010, when I noticed that global warming was like a huge wave crashing down on our civilization, I started the Azimuth Project. The goal was to create a focal point for scientists and engineers interested in saving the planet. It consists of a team of people, a blog, a wiki and a discussion group. It was very productive for a while: we wrote a lot of educational articles on climate science and energy issues. But lately I’ve realized I’m better at abstract math. So, I’ve been putting more time into working with my grad students.

What about climate change has captured your interest?

That’s like asking: “What about that huge tsunami rushing toward us has captured your interest?”

Around 2004 I started hearing news that sent chills up my spine ­ and what really worried me is how few people were talking about this news, at least in the US.

I’m talking about how we’re pushing the Earth’s climate out of the glacial cycle we’ve been in for over a million years, into brand new territory. I’m talking about things like how it takes hundreds or thousands of years for CO2 to exit the atmosphere after it’s been put in. And I’m talking about how global warming is just part of a bigger phenomenon: the Anthropocene. That’s a new geological epoch, in which the biosphere is rapidly changing due to human influences. It’s not just the temperature:

• About 1/4 of all chemical energy produced by plants is now used by humans.

• The rate of species going extinct is 100­–1000 times the usual background rate.

• Populations of large ocean fish have declined 90% since 1950.

• Humans now take more nitrogen from the atmosphere and convert it into nitrates than all other processes combined.

8­-9 times as much phosphorus is flowing into oceans than the natural background rate.

This doesn’t necessarily spell the end of our civilization, but it is something that we’ll all have to deal with.

So, I felt the need to alert people and try to dream up strategies to do something. That’s why in 2010 I quit work on n­-categories and started the Azimuth Project.

Carbon Dioxide Variations

You have life experience on both US coasts. Which do you prefer and why?

There are some differences between the coasts, but they’re fairly minor. The West Coast is part of the Pacific Rim, so there’s more Asian influence here. The seasons are less pronounced here, because winds in the northern hemisphere blow from west to east, and the oceans serve as a temperature control system. Down south in Riverside it’s a semi­-desert, so we can eat breakfast in our back yard in January! But I live here not because I like the West Coast more. This just happens to be where my wife Lisa and I managed to get a job.

What I really like is getting out of the US and seeing the rest of the world. When you’re at cremation ritual in Bali, or a Hmong festival in Laos, the difference between regions of the US starts seeming pretty small.

But I wasn’t a born traveler. When I spent my first summer in England, I was very apprehensive about making a fool of myself. The British have different manners, and their old universities are full of arcane customs and subtle social distinctions that even the British find terrifying. But after a few summers there I got over it. First, all around the world, being American gives you a license to be clueless. If you behave any better than the worst stereotypes, people are impressed. Second, I spend most of my time with mathematicians, who are incredibly forgiving of bad social behavior as long as you know interesting theorems.

By now I’ve gotten to feel very comfortable in England. The last couple of years I’ve spent time at the quantum computation group at Oxford–the group run by Bob Coecke and Samson Abramsky. I like talking to Jamie Vicary about n­categories and physics, and also my old friend Minhyong Kim, who is a number theorist there.

I was also very apprehensive when I first visited Paris. Everyone talks about how the waiters are rude, and so on. But I think that’s an exaggeration. Yes, if you go to cafés packed with boorish tourists, the waiters will treat you like a boorish tourist—so don’t do that. If you go to quieter places and behave politely, most people are friendly. Luckily Lisa speaks French and has some friends in Paris; that opens up a lot of opportunities. I don’t speak French, so I always feel like a bit of an idiot, but I’ve learned to cope. I’ve spent a few summers there working with Paul­-André Melliès on category theory and logic.

Yau Ma Tei Market - Hong Kong

Yau Ma Tei Market – Hong Kong

I was also intimidated when I first spent a summer in Hong Kong—and even more so when I spent a summer in Shanghai. Lisa speaks Chinese too: she’s more cultured than me, and she drags me to interesting places. My first day walking around Shanghai left me completely exhausted: everything was new! Walking down the street you see people selling frogs in a bucket, strange fungi and herbs, then a little phone shop where telephone numbers with lots of 8’s cost more, and so on: it’s a kind of cognitive assault.

But again, I came to enjoy it. And coming back to California, everything seemed a bit boring. Why is there so much land that’s not being used? Where are all the people? Why is the food so bland?

I’ve spent the most time outside the US in Singapore. Again, that’s because my wife and I both got job offers there, not because it’s the best place in the world. Compared to China it’s rather sterile and manicured. But it’s still a fascinating place. They’ve pulled themselves up from a British colonial port town to a multi­cultural country that’s in some ways more technologically advanced than the US. The food is great: it’s a mix of Chinese, Indian, Malay and pretty much everything else. There’s essentially no crime: you can walk around in the darkest alley in the worst part of town at 3 am and still feel safe. It’s interesting to live in a country where people from very different cultures are learning to live together and prosper. The US considers itself a melting-pot, but in Singapore they have four national languages: English, Mandarin, Malay and Tamil.

Most of all, it’s great to live in places where the culture and politics is different than where I grew up. But I’m trying to travel less, because it’s bad for the planet.

You’ve gained some fame for your “crackpot index”. What were your motivations for developing it? Any new criteria you’d add?

After the internet first caught on, a bunch of us started using it to talk about physics on the usenet newsgroup sci.physics.

And then, all of a sudden, crackpots around the world started joining in!

Before this, I don’t think anybody realized how many people had their own personal theories of physics. You might have a crazy uncle who spent his time trying to refute special relativity, but you didn’t realize there were actually thousands of these crazy uncles.

As I’m sure you know here at Physics Forums, crackpots naturally tend to drive out more serious conversations. If you have some people talking about the laws of black hole thermodynamics, and some guy jumps in and says that the universe is a black hole, everyone will drop what they’re doing and argue with that guy. It’s irresistible. It reminds me of how when someone brings a baby to a party, everyone will start cooing to the baby. But it’s worse.

When physics crackpots started taking over the usenet newsgroup sci.physics, I discovered that they had a lot of features in common. The Crackpot Index summarizes these common features. Whenever I notice a new pattern, I add it.

For example: if someone starts comparing themselves to Galileo and says the physics establishment is going after them like the Inquisition, I guarantee you that they’re a crackpot. Their theories could be right—but unfortunately, they’ve got delusions of grandeur and a persecution complex.

It’s not being wrong that makes someone a crackpot. Being a full­-fledged crackpot is the endpoint of a tragic syndrome. Someone starts out being a bit too confident that they can revolutionize physics without learning it first. In fact, many young physicists go through this stage! But the good ones react to criticism by upping their game. The ones who become crackpots just brush it off. They come up with an idea that they think is great, and when nobody likes it, they don’t say “okay, I need to learn more.” Instead, they make up excuses: nobody understands me, maybe there’s a conspiracy at work, etc. The excuses get more complicated with each rebuff, and it gets harder and harder for them to back down and say “whoops, I was wrong”.

When I wrote the Crackpot Index, I thought crackpots were funny. Alexander Abian claimed all the world’s ills would be cured if we blew up the Moon. Archimedes Plutonium thinks the Universe is a giant plutonium atom. These ideas are funny. But now I realize how sad it is that someone can start with an passion for physics and end up in this kind of trap. They almost never escape.

Who are some of your math and physics heroes of the past and of today?

Wow, that’s a big question! I think every scientist needs to have heroes. I’ve had a lot.

Marie Curie

Marie Curie

When I was a kid, I was in love with Marie Curie. I wanted to marry a woman like her: someone who really cared about science. She overcame huge obstacles to get a degree in physics, discovered not one but two new elements, often doing experiments in her own kitchen—and won not one but two Nobel prizes. She was a tragic figure in many ways. Her beloved husband Pierre, a great physicist in his own right, slipped and was run over by a horse­-drawn cart, dying instantly when the wheels ran over his skull. She herself probably died from her experiments with radiation. But this made me love her all the more.

Later my big hero was Einstein. How could any physicist not have Einstein as a hero? First he came up with the idea that light comes in discrete quanta: photons. Then, two months later, he used Brownian motion to figure out the size of atoms. One month after that: special relativity, unifying space and time! Three months later, the equivalence between mass and energy. And all this was just a warmup for his truly magnificent theory of general relativity, explaining gravity as the curvature of space and time. He truly transformed our vision of the Universe. And then, in his later years, the noble and unsuccessful search for a unified field theory. As a friend of mine put it, what matters here is not that he failed: what matters is that he set physics a new goal, more ambitious than any goal it had before.

Later it was Feynman. As I mentioned, my uncle gave me Feynman’s Lectures on Physics. This is how I first learned Maxwell’s equations, special relativity, quantum mechanics. His way of explaining things with a minimum of jargon, getting straight to the heart of every issue, is something I really admire. Later I enjoyed his books like Surely You Must Be Joking. Still later I learned enough to be impressed by his work on QED.

But when you read his autobiographical books, you can see that he was a bit too obsessed with pretending to be a fun­-loving ordinary guy. A fun­-loving ordinary guy who just happens to be smarter than everyone else. In short, a self­-absorbed showoff. He could also be pretty mean to women—and in that respect, Einstein was even worse. So our heroes should not be admired uncritically.

Alexander Grothendieck

Alexander Grothendieck

A good example is Alexander Grothendieck. I guess he’s my main math hero these days. To solve concrete problems like the Weil conjectures, he avoided brute force techniques and instead developed revolutionary new concepts that gently dissolved those problems. And these new concepts turned out to be much more important than the problems that motivated him. I’m talking about abelian categories, schemes, topoi, stacks, things like that. Everyone who really wants to understand math at a deep level has got to learn these concepts. They’re beautiful and wonderfully simple—but not easy to master. You have to really change your world view to understand them, just like general relativity or quantum mechanics. You have to rewire your neurons.

At his peak, Grothendieck seemed almost superhuman. It seems he worked almost all day and all night, bouncing his ideas off the other amazing French algebraic geometers. Apparently 20,000 pages of his writings remain unpublished! But he became increasingly alienated from the mathematical establishment and eventually disappeared completely, hiding in a village near the Pyrenees.

Which groundbreaking advances in science and math are you most looking forward to?

I’d really like to see progress in figuring out the fundamental laws of physics. Ideally, I’d like to know the Theory of Everything. Of course, we don’t even know that there is one! There could be an endless succession of deeper and deeper realizations to be had about the laws of physics, with no final answer.

If we ever do discover the Theory of Everything, that won’t be the end of the story. It could be just the beginning. For example, next we could ask why this particular theory governs our Universe. Is it necessary, or contingent? People like to chat about this puzzle already, but I think it’s premature. I think we should find the Theory of Everything first.

Unfortunately, right now fundamental physics is in a phase of being “stuck”. I don’t expect to see the Theory of Everything in my lifetime. I’d be happy to see any progress at all! There are dozens of very basic things we don’t understand.

When it comes to math, I expect that people will have their hands full this century redoing the foundations using ∞-categories, and answering some of the questions that come up when you do this. The crowd working on “homotopy type theory” is making good progress–but so far they’re mainly thinking about ∞-groupoids, which are a very special sort of ∞-category. When we do all of math using ∞-categories, it will be a whole new ballgame.

And then there’s the question of whether humanity will figure out a way to keep from ruining the planet we live on. And the question of whether we’ll succeed in replacing ourselves with something more intelligent—or even wiser.

The Milky Way and Andromeda Nebula after their first collision, 4 billion years from now

The Milky Way and Andromeda Nebula after their first collision, 4 billion years from now

Here’s something cool: red dwarf stars will keep burning for 10 trillion years. If we, or any civilization, can settle down next to one of those, there will be plenty of time to figure things out. That’s what I hope for.

But some of my friends think that life always uses up resources as fast as possible. So one of my big questions is whether intelligent life will develop the patience to sit around and think interesting thoughts, or whether it will burn up red dwarf stars and every other source of energy as fast as it can, as we’re doing now with fossil fuels.

What does the future hold for John Baez? What are your goals?

What the future holds for me, primarily, is death.

That’s true of all of us—or at least most of us. While some hope that technology will bring immortality, or at least a much longer life, I bet most of us are headed for death fairly soon. So I try to make the most of the time I have.

I’m always re­-evaluating what I should do. I used to spend time thinking about quantum gravity and n­-categories. But quantum gravity feels stuck, and n­-category theory is shooting forward so fast that my help is no longer needed.

Climate change is hugely important, and nobody really knows what to do about it. Lots of people are trying lots of different things. Unfortunately I’m no better than the rest when it comes to the most obvious strategies—like politics, or climate science, or safer nuclear reactors, or better batteries and photocells.

The trick is finding things you can do better than other people. Right now for me that means thinking about networks and biology in a very abstract way. I’m inspired by this remark by Patten and Witkamp:

To understand ecosystems, ultimately will be to understand networks.

So that’s my goal for the next five years or so. It’s probably not be the best thing anyone can do to prepare for the Middle Anthropocene. But it may be the best thing I can do: use the math I know to help people understand the biosphere.

It may seem like I keep jumping around: from quantum gravity to n-categories to biology. But I keep wanting to think about networks, and how they change in time.

At some point I hope to retire and become a bit more of a self­-indulgent wastrel. I could write a fun book about group theory in geometry and physics, and a fun book about the octonions. I might even get around to spending more time on music!

John Baez in Namo Gorge, Gansu

John Baez

10 Responses to Interview (Part 2)

  1. interstice says:

    What’s the quickest way to obtain some understanding of the revolutionary ideas that Grothendieck invented?

    • John Baez says:

      The answer depends a lot on how much math you already know, and what kinds.

      However, no matter what you know, it’s worth reading this obituary of Grothendieck:

      • David Mumford and John Tate, Can one explain schemes to biologists?, 14 December 2014.

      These two famous mathematicians wrote an obituary for Nature magazine, which tried to explain in simple terms the essence of one of Grothendieck’s ideas. It was rejected as being too technical. Mumford writes:

      The sad thing is that this was rejected as much too technical for their readership. Their editor wrote me that ‘higher degree polynomials’, ‘infinitesimal vectors’ and ‘complex space’ (even complex numbers) were things at least half their readership had never come across. The gap between the world I have lived in and that even of scientists has never seemed larger. I am prepared for lawyers and business people to say they hated math and not to remember any math beyond arithmetic, but this!?

      A simplified version was later published in Nature.

      • ” he accused the math world of being totally corrupt.”

        It seems a bit harsh to accuse the entire establishment of corruption.

        I would recommend the author of that obit, David Mumford’s book “Pattern Theory: The Stochastic Analysis of Real-World Signals”. I purchased it a few years ago and have been able to apply quite a few of Mumford’s ideas to what I am working on.

        • The Partnership of Pure and Applied Math presentation by David Mumford (2013).

          Mumford claims that biologists are losing the ability to think in terms of abstract mathematics, which I think is the opening that John is targeting.

        • John Baez says:

          Does he claim biologists ever had this ability to begin with?

          By the way, among mathematicians David Mumford is mainly famous as an algebraic geometer. His Red Book of Varieties and Schemes is legendary. He then shocked and no doubt disappointed many people by starting to work on applied topics.

        • Yes you’re right John. I put words in his mouth. This is Mumford in his own words:

          “Try explaining a relevant piece of math to a biologist (e.g. who doesn’t know what a group is)!”

          Another piece from his blog:
          Can one explain schemes to biologists

          “A sad story. How much math do biologists need? I would argue first of all that oscillations are central part of every science plus engineering/economics/business (arguably excluding computer science) and one needs the basic tools for describing them — sines and cosines, all of trig of course, Euler’s formula e^(ix)=cos(x)+i.sin(x) and especially Fourier series. “

      • interstice says:

        Thanks! What would you recommend to someone who knows most undergraduate math (basic abstract algebra, analysis, topology, geometry, etc) but little more?

      • John Baez says:

        Interstice wrote:

        What would you recommend to someone who knows most undergraduate math (basic abstract algebra, analysis, topology, geometry, etc) but little more?

        I think it would be a delightful but lengthy project to understand all of Grothendieck’s main new concepts: abelian categories, schemes, sites, topoi, stacks and motives. (The word “sheaves” feels like it should be on this list, and you need to understand them to understand sites, topoi or stacks—but sheaves weren’t invented by him.)

        Unfortunately, I don’t know a book that serves as a gentle tour guide to precisely these concepts. That’s sad: they’re not as hard as they’re made out to be. I have dreams of writing a book called Scary Concepts in Mathematics, which would remedy this problem. But I may never get around to writing that.

        So, how about focusing on schemes? They’re fundamental to modern algebraic geometry, and there’s a pretty nice free book on them:

        • David Eisenbud and Joe Harris, The Geometry of Schemes.

        On the other hand, looking this over, I’m afraid it may contain too much jargon.

        So on second thought, I suggest starting with my quick introduction to affine schemes in week 1 of my Fall 2015 category theory lectures. Indeed, this whole course is designed to show how your worldview changes when you start thinking with categories—you might like it, I can’t tell.

        General schemes are built by gluing together affine schemes just as manifolds are built by gluing together copies of \mathbb{R}^n. But if you don’t know what a manifold is, this won’t make you happy!

        For most people, it’s probably about 50 times more important to learn what a manifold is than what a scheme is. Depending on what you mean by ‘geometry’, you may already be comfortable with manifolds, in which case schemes should seem like a psychedelic variant on a familiar theme.

  2. Oscar says:

    You mentioned that you spend a lot of time thinking about networks and how they change with time. Do you have any papers on the subject that you can refer me towards? I’m interested in thinking about how we can model the evolution of probabilistic graphical models over time.

You can use Markdown or HTML in your comments. You can also use LaTeX, like this: $latex E = m c^2 $. The word 'latex' comes right after the first dollar sign, with a space after it.

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s