Applied Category Theory Course: Resource Theories


My course on applied category theory is continuing! After a two-week break where the students did exercises, I’m back to lecturing about Fong and Spivak’s book Seven Sketches. Now we’re talking about “resource theories”. Resource theories help us answer questions like this:

  1. Given what I have, is it possible to get what I want?
  2. Given what I have, how much will it cost to get what I want?
  3. Given what I have, how long will it take to get what I want?
  4. Given what I have, what is the set of ways to get what I want?

Resource theories in their modern form were arguably born in these papers:

• Bob Coecke, Tobias Fritz and Robert W. Spekkens, A mathematical theory of resources.

• Tobias Fritz, Resource convertibility and ordered commutative monoids.

We are lucky to have Tobias in our course, helping the discussions along! He’s already posted some articles on resource theory here on this blog:

• Tobias Fritz, Resource convertibility (part 1), Azimuth, 7 April 2015.

• Tobias Fritz, Resource convertibility (part 2), Azimuth, 10 April 2015.

• Tobias Fritz, Resource convertibility (part 3), Azimuth, 13 April 2015.

We’re having fun bouncing between the relatively abstract world of monoidal preorders and their very concrete real-world applications to chemistry, scheduling, manufacturing and other topics. Here are the lectures so far:

Lecture 18 – Chapter 2: Resource Theories
Lecture 19 – Chapter 2: Chemistry and Scheduling
Lecture 20 – Chapter 2: Manufacturing
Lecture 21 – Chapter 2: Monoidal Preorders
Lecture 22 – Chapter 2: Symmetric Monoidal Preorders
Lecture 23 – Chapter 2: Commutative Monoidal Posets
Lecture 24 – Chapter 2: Pricing Resources
Lecture 25 – Chapter 2: Reaction Networks
Lecture 26 – Chapter 2: Monoidal Monotones
Lecture 27 – Chapter 2: Adjoints of Monoidal Monotones
Lecture 28 – Chapter 2: Ignoring Externalities
Lecture 29 – Chapter 2: Enriched Categories
Lecture 30 – Chapter 2: Preorders as Enriched Categories
Lecture 31 – Chapter 2: Lawvere Metric Spaces
Lecture 32 – Chapter 2: Enriched Functors
Lecture 33 – Chapter 2: Tying Up Loose Ends