Dynamical Systems and Their Steady States

 

As part of the Applied Category Theory 2018 school, Maru Sarazola wrote a blog article on open dynamical systems and their steady states. Check it out:

• Maru Sarazola, Dynamical systems and their steady states, The n-Category Café, 2 April 2018.

She compares two papers:

• David Spivak, The steady states of coupled dynamical systems compose according to matrix arithmetic.

• John Baez and Blake Pollard, A compositional framework for reaction networks, Reviews in Mathematical Physics 29 (2017), 1750028.
(Blog article here.)

It’s great, because I’d never really gotten around to understanding the precise relationship between these two approaches. I wish I knew the answers to the questions she raises at the end!

One Response to Dynamical Systems and Their Steady States

  1. Norbert Weiner suggested looking for transformations that would yield the statistics of output measurements from those of the measurements of the inputs. Following this idea,using the system identification TARMAX model may be a useful way to approach the captioned subject. TARMAX may, also, be useful for discovering not-hidden, just not-considered important variables.

You can use Markdown or HTML in your comments. You can also use LaTeX, like this: $latex E = m c^2 $. The word 'latex' comes right after the first dollar sign, with a space after it.

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.