Structured Cospans and Double Categories

 \; \phantom{a}

This talk on structured cospans and double categories is the first of a two-part series; the second part is about structured cospans and Petri nets.

I gave the first talk at the ACT@UCR seminar, on Wednesday April 1st. Afterwards we discussed it on the Category Theory Community Server, here:

https://categorytheory.zulipchat.com/#narrow/stream/229966-ACT.40UCR-seminar/topic/April.201st.3A.20John.20Baez

You can view or join the conversation there if you sign in.

You can see my slides here, or download a video here, or watch the video here:

Structured cospans and double categories

Abstract. One goal of applied category theory is to better understand networks appearing throughout science and engineering. Here we introduce “structured cospans” as a way to study networks with inputs and outputs. Given a functor L: A → X, a structured cospan is a diagram in X of the form

If A and X have finite colimits and L is a left adjoint, we obtain a symmetric monoidal category whose objects are those of A and whose morphisms are certain equivalence classes of structured cospans. However, this arises from a more fundamental structure: a symmetric monoidal double category where the horizontal 1-cells are structured cospans, not equivalence classes thereof. We explain the mathematics and illustrate it with an example from epidemiology.

This talk was based on work with Kenny Courser and Christina Vasilakopoulou, some of which appears here:

• John Baez and Kenny Courser, Structured cospans.

• Kenny Courser, Open Systems: a Double Categorical Perspective.

Yesterday Rongmin Lu told me something amazing: structured cospans were invented in 2007 by José Luiz Fiadeiro and Vincent Schmit. It’s pretty common for simple ideas to be discovered several times. The amazing thing is that these other authors also called these things ‘structured cospans’!

• José Luiz Fiadeiro and Vincent Schmitt, Structured co-spans: an algebra of interaction protocols, in International Conference on Algebra and Coalgebra in Computer Science, Springer, Berlin, 2007.

These earlier authors did not do everything we’ve done, so I’m not upset. Their work proves I chose the right name.

You can use Markdown or HTML in your comments. You can also use LaTeX, like this: $latex E = m c^2 $. The word 'latex' comes right after the first dollar sign, with a space after it.

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.