Language Complexity (Part 5)

David A. Tanzer

Big O analysis

Recall our function f(n) from Part 4, which gives the values 2, 13, 14, 25, 26, 37, …

Using ‘big O’ notation, we write f(n) = O(n) to say that f is linearly bounded.

This means that f(n) will eventually become less than some linear function.

As we said, f(n) has a “rough slope” of 6. So f could never be bounded by e.g. the linear function 2n. On the other hand it looks like f should be bounded by any linear function with slope greater than 6, e.g., g(n) = 10n. However, g is not a perfect bound on f, as f(0)=2 > g(0)=0, and f(1)=13 > g(1)=10.

But once n reaches 2 we have that f(n) < g(n). So we say that f is eventually bounded by g.

Now let’s recap.

Definition.   f(n) = O(n) means that for some r > 0 and n_1, we have that n > n_1 \implies |f(n)| < r  n.

Now let’s apply big O to the analysis of this function from the previous post:

def approximately_linear(text):
    counter = 0
    for i = 1 to length(text):
        if i is odd:
            for j = 1 to 10:
                counter = counter + 1
    return counter
    

The function approximately_linear has definite linear time complexity because:

f(n) \equiv \text{MaxSteps}(\mathit{approximately\_linear}, n) = O(n)

Reposted from the Signal Beat, Copyright © 2021, All Rights Reserved.

One Response to Language Complexity (Part 5)

  1. […] David A. Tanzer, February 9, 2021, in unit Language Complexity. Cross-posted to the Azimuth Blog. […]

You can use Markdown or HTML in your comments. You can also use LaTeX, like this: $latex E = m c^2 $. The word 'latex' comes right after the first dollar sign, with a space after it.

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.