Give the Earth a Present: Help Us Save Climate Data

28 December, 2016


We’ve been busy backing up climate data before Trump becomes President. Now you can help too, with some money to pay for servers and storage space. Please give what you can at our Kickstarter campaign here:

Azimuth Climate Data Backup Project.

If we get $5000 by the end of January, we can save this data until we convince bigger organizations to take over. If we don’t get that much, we get nothing. That’s how Kickstarter works. Also, if you donate now, you won’t be billed until January 31st.

So, please help! It’s urgent.

I will make public how we spend this money. And if we get more than $5000, I’ll make sure it’s put to good use. There’s a lot of work we could do to make sure the data is authenticated, made easily accessible, and so on.

The idea

The safety of US government climate data is at risk. Trump plans to have climate change deniers running every agency concerned with climate change. So, scientists are rushing to back up the many climate databases held by US government agencies before he takes office.

We hope he won’t be rash enough to delete these precious records. But: better safe than sorry!

The Azimuth Climate Data Backup Project is part of this effort. So far our volunteers have backed up nearly 1 terabyte of climate data from NASA and other agencies. We’ll do a lot more! We just need some funds to pay for storage space and a server until larger institutions take over this task.

The team

Jan Galkowski is a statistician with a strong interest in climate science. He works at Akamai Technologies, a company responsible for serving at least 15% of all web traffic. He began downloading climate data on the 11th of December.

• Shortly thereafter John Baez, a mathematician and science blogger at U. C. Riverside, joined in to publicize the project. He’d already founded an organization called the Azimuth Project, which helps scientists and engineers cooperate on environmental issues.

• When Jan started running out of storage space, Scott Maxwell jumped in. He used to work for NASA—driving a Mars rover among other things—and now he works for Google. He set up a 10-terabyte account on Google Drive and started backing up data himself.

• A couple of days later Sakari Maaranen joined the team. He’s a systems architect at Ubisecure, a Finnish firm, with access to a high-bandwidth connection. He set up a server, he’s downloading lots of data, he showed us how to authenticate it with SHA-256 hashes, and he’s managing many other technical aspects of this project.

There are other people involved too. You can watch the nitty-gritty details of our progress here:

Azimuth Backup Project – Issue Tracker.

and you can learn more here:

Azimuth Climate Data Backup Project.

Azimuth Backup Project (Part 1)

16 December, 2016

This blog page is to help organize the Azimuth Environmental Data Backup Project, or Azimuth Backup Project for short. This is part of the larger but decentralized, frantic and somewhat disorganized project discussed elsewhere:

Saving Climate Data (Part 2), Azimuth, 15 December 2016.

Here I’ll just say what we’re doing at Azimuth.

Jan Galkowski is a statistician and engineer at Akamai Technologies, a company in Cambridge Massachusetts whose content delivery network is one of the world’s largest distributed computing platforms, responsible for serving at least 15% of all web traffic. He has begun copying some of the publicly accessible US government climate databases. On 11 December he wrote:

John, so I have just started trying to mirror all of CDIAC [the Carbon Dioxide Information Analysis Center]. We’ll see. I’ll put it in a tarball, and then throw it up on Google. It should keep everything intact. Using WinHTTrack. I have coordinated with Eric Holthaus via Twitter, creating, per your suggestion, a new personal account which I am using exclusively to follow the principals.

Once CDIAC is done, and checked over, I’ll move on to other sites.

There are things beyond our control, such as paper records, or records which are online but are not within visibility of the public.

Oh, and I’ve formally requested time off from work for latter half of December so I can work this on vacation. (I have a number of other projects I want to work in parallel, anyway.)

By 14 December he was wanting some more storage space. He asked David Tanzer and me:

Do either of you have a large Google account, or the “unlimited storage” option at Amazon?

I’m using WebDrive, a commercial product. What I’m (now) doing is defining an FTP map at a .gov server, and then a map to my Amazon Cloud Drive. I’m using Windows 7, so these appear as standard drives (or mounts, in *nix terms). I navigate to an appropriate place on the Amazon Drive, and then I proceed to copy from .gov to Amazon.

There is no compression, and, in order to be sure I don’t abuse the .gov site, I’m deliberately passing this over a wireless network in my home, which limits the transfer rate. If necessary, and if the .gov site permits, I could hardwire the workstation to our FIOS router and get appreciably faster transfer. (I often do that for large work files.)

The nice thing is I get to work from home 3 days a week, so I can keep an eye on this. And I’m taking days off just to do this.

I’m thinking about how I might get a second workstation in the act.

The Web sites themselves I’m downloading, as mentioned, using HTTrack. I intended to tarball-up the site structure and then upload to Amazon. I’m still working on CDIAC at ORNL. For future sites, I’m going to try to get HTTrack to mirror directly to Amazon using one of the mounts.

I asked around for more storage space, and my request was kindly answer by Scott Maxwell. Scott lives in Pasadena California and he used to work for NASA: he even had a job driving a Mars rover! He is now a site reliability engineer at Google, and he works on Google Drive. Scott is setting up a 10-terabyte account on Google Drive, which Jan and others will be able to use.

Meanwhile, Jan noticed some interesting technical problems: for some reason WebDrive is barely using the capacity of his network connection, so things are moving much more slowly than they could in theory.

Most recently, Sakari Maaranen offered his assistance. Sakari is a systems architect at Ubisecure, a firm in Finland that specializes in identity management, advanced user authentication, authorization, single sign-on, and federation. He wrote:

I have several terabytes worth in Helsinki (can get more) and a gigabit connection. I registered my offer but they [the DataRefuge people] didn’t reply though. I’m glad if that means you have help already and don’t need a copy in Helsinki.

I replied saying that the absence of a reply probably means that they’re overwhelmed by offers of help and are struggling to figure out exactly what to do. Scott said:

Hey, Sakari! Thank you for the generous offer!

I’m setting these guys up with Google Drive storage, as at least a short-term solution.

IMHO, our first order of business is just to get a copy of the data into a location we control—one that can’t easily be taken away from us. That’s the rationale for Google Drive: it fits into Jan’s existing workflow, so it’s the lowest-friction path to getting a copy of the data that’s under our control.

How about if I propose this: we let Jan go ahead with the plan of backing up the data in Drive. Then I’ll look evaluate moving it from there to whatever other location we come up with. (Or copying instead of moving! More copies is better. :-) How does that sound to you?

I admit I haven’t gotten as far as thinking about Web serving at all—and it’s not my area of expertise anyway. Maybe you’d be kind enough to elaborate on your thoughts there.

Sakari responded with some information about servers. In late January, U. C. Riverside may help me with this—until then they are busy trying to get more storage space, for wholly unrelated reasons. But right now it seems the main job is to identify important data and get it under our control.

There are a lot of ways you could help.

Computer skills. Personally I’m not much use with anything technical about computers, but the rest of the Azimuth Data Backup gang probably has technical questions that some of you out there could answer… so, I encourage discussion of those questions. (Clearly some discussions are best done privately, and at some point we may encounter unfriendly forces, but this is a good place for roaming experts to answer questions.)

Security. Having a backup of climate data is not very useful if there are also fake databases floating around and you can’t prove yours is authentic. How can we create a kind of digital certificate that our database matches what was on a specific website at a specific time? We should do this if someone here has the expertise.

Money. If we wind up wanting to set up a permanent database with a nice front end, accessible from the web, we may want money. We could do a Kickstarter campaign. People may be more interested in giving money now than later, unless the political situation immediately gets worse after January 20th.

Strategy. We should talk a bit about what to do next, though too much talk tends to prevent action. Eventually, if all goes well, our homegrown effort will be overshadowed by others, at least in sheer quantity. About 3 hours ago Eric Holthaus tweeted “we just got a donation of several petabytes”. If it becomes clear that others are putting together huge, secure databases with nice front ends, we can either quit or—better—cooperate with them, and specialize on something we’re good at and enjoy.


Complex Adaptive System Design (Part 2)

18 October, 2016

Yesterday Blake Pollard and I drove to Metron’s branch in San Diego. For the first time, I met four of the main project participants: John Foley (math), Thy Tran (programming), Tom Mifflin and Chris Boner (two higher-ups involved in the project). Jeff Monroe and Tiffany Change give us a briefing on Metron’s ExAMS software. This lets you design complex systems and view them in various ways.

The most fundamental view is the ‘activity trace’, which consists of a bunch of parallel rows, one for each ‘performer’. Each row has a bunch of boxes which represent ‘activities’ that the performer can do. Two boxes are connected by a wire when one box’s activity causes another to occur. In general, time goes from left to right. Thus, if B can only occur after A, the box for B is drawn to the right of the box for A.

The wires can also merge via logic gates. For example, suppose activity D occurs whenever A and B but not C have occurred. Then wires coming out of the A, B, and C boxes merge in a logic gate and go into the A box. However, these gates are a bit more general than your ordinary Boolean logic gates. They may also involve ‘delays’, e.g. we can say that A occurs 10 minutes after B occurs.

I would like to understand the mathematics of just these logic gates, for starters. Ignoring delays for a minute (get the pun?), they seem to be giving a generalization of Petri nets. In a Petri net we only get to use the logical connective ‘and’. In other words, an activity can occur when all of some other activities have occurred. People have considered various generalizations of Petri nets, and I think some of them allow more general logical connectives, but I’m forgetting where I saw this done. Do you know?

In the full-fledged activity traces, the ‘activity’ boxes also compute functions, whose values flow along the wires and serve as inputs to other box. That is, when an activity occurs, it produces an output, which depends on the inputs entering the box along input wires. The output then appears on the wires coming out of that box.

I forget if each activity box can have multiple inputs and multiple outputs, but that’s certainly a natural thing.

The fun part is that one one can zoom in on any activity trace, seeing more fine-grained descriptions of the activities. In this more fine-grained description each box turns into a number of boxes connected by wires. And perhaps each wire becomes a number of parallel wires? That would be mathematically natural.

Activity traces give the so-called ‘logical’ description of the complex system being described. There is also a much more complicated ‘physical’ description, saying the exact mechanical functioning of all the parts. These parts are described using ‘plugins’ which need to be carefully described ahead of time—but can then simply be used when assembling a complex system.

Our little team is supposed to be designing our own complex systems using operads, but we want to take advantage of the fact that Metron already has this working system, ExAMS. Thus, one thing I’d like to do is understand ExAMS in terms of operads and figure out how to do something exciting and new using this understanding. I was very happy when Tom Mifflin embraced this goal.

Unfortunately there’s no manual for ExAMS: the US government was willing to pay for the creation of this system, but not willing to pay for documentation. Luckily it seems fairly simple, at least the part that I care about. (There are a lot of other views derived from the activity trace, but I don’t need to worry about these.) Also, ExAMS uses some DoDAF standards which I can read about. Furthermore, in some ways it resembles UML and SySML, or more precisely, certain parts of these languages.

In particular, the ‘activity diagrams’ in UML are a lot like the activity traces in ExAMS. There’s an activity diagram at the top of this page, and another below, in which time proceeds down the page.

So, I plan to put some time into understanding the underlying math of these diagrams! If you know people who have studied them using ideas from category theory, please tell me.

Complex Adaptive System Design (Part 1)

2 October, 2016

In January of this year, I was contacted by a company called Metron Scientific Solutions. They asked if I’d like to join them in a project to use category theory to design and evaluate complex, adaptive systems of systems.

What’s a ‘system of systems’?

It’s a system made of many disparate parts, each of which is a complex system in its own right. The biosphere is a system of systems. But so far, people usually use this buzzword for large human-engineered systems where the different components are made by different organizations, perhaps over a long period of time, with changing and/or incompatible standards. This makes it impossible to fine-tune everything in a top-down way and have everything fit together seamlessly.

So, systems of systems are inherently messy. And yet we need them.

Metron was applying for a grant from DARPA, the Defense Advanced Research Projects Agency, which funds a lot of cutting-edge research for the US military. It may seem surprising that DARPA is explicitly interested in using category theory to study systems of systems. But it actually shouldn’t be surprising: their mission is to try many things and find a few that work. They are willing to take risks.

Metron was applying for a grant under a DARPA program run by John S. Paschkewitz, who is interested in

new paradigms and foundational approaches for the design of complex systems and system-of-systems (SoS) architectures.

This program is called CASCADE, short for Complex Adaptive System Composition and Design Environment. Here’s the idea:

Complex interconnected systems are increasingly becoming part of everyday life in both military and civilian environments. In the military domain, air-dominance system-of-systems concepts, such as those being developed under DARPA’s SoSITE effort, envision manned and unmanned aircraft linked by networks that seamlessly share data and resources in real time. In civilian settings such as urban “smart cities”, critical infrastructure systems—water, power, transportation, communications and cyber—are similarly integrated within complex networks. Dynamic systems such as these promise capabilities that are greater than the mere sum of their parts, as well as enhanced resilience when challenged by adversaries or natural disasters. But they are difficult to model and cannot be systematically designed using today’s tools, which are simply not up to the task of assessing and predicting the complex interactions among system structures and behaviors that constantly change across time and space.

To overcome this challenge, DARPA has announced the Complex Adaptive System Composition and Design Environment (CASCADE) program. The goal of CASCADE is to advance and exploit novel mathematical techniques able to provide a deeper understanding of system component interactions and a unified view of system behaviors. The program also aims to develop a formal language for composing and designing complex adaptive systems. A special notice announcing a Proposers Day on Dec. 9, 2015, was released today on FedBizOpps here:

“CASCADE aims to fundamentally change how we design systems for real-time resilient response within dynamic, unexpected environments,” said John Paschkewitz, DARPA program manager. “Existing modeling and design tools invoke static ‘playbook’ concepts that don’t adequately represent the complexity of, say, an airborne system of systems with its constantly changing variables, such as enemy jamming, bad weather, or loss of one or more aircraft. As another example, this program could inform the design of future forward-deployed military surgical capabilities by making sure the functions, structures, behaviors and constraints of the medical system—such as surgeons, helicopters, communication networks, transportation, time, and blood supply—are accurately modeled and understood.”

CASCADE could also help the Department of Defense fulfill its role of providing humanitarian assistance in response to a devastating earthquake, hurricane or other catastrophe, by developing comprehensive response models that account for the many components and interactions inherent in such missions, whether in urban or austere environs.

“We need new design and representation tools to ensure resilience of buildings, electricity, drinking water supply, healthcare, roads and sanitation when disaster strikes,” Paschkewitz said. “CASCADE could help develop models that would provide civil authorities, first responders and assisting military commanders with the sequence and timing of critical actions they need to take for saving lives and restoring critical infrastructure. In the stress following a major disaster, models that could do that would be invaluable.”

The CASCADE program seeks expertise in the following areas:

• Applied mathematics, especially in category theory, algebraic geometry and topology, and sheaf theory

• Operations research, control theory and planning, especially in stochastic and non-linear control

• Modeling and applications responsive to challenges in battlefield medicine logistics and platforms, adaptive logistics, reliability, and maintenance

• Search and rescue platforms and modeling

• Adaptive and resilient urban infrastructure

Metron already designs systems of systems used in Coast Guard search and rescue missions. Their grant proposal was to use category theory and operads to do this better. They needed an academic mathematician as part of their team: that was one of the program’s requirements. So they asked if I was interested.

I had mixed feelings.

On the one hand, I come from a line of peaceniks including Joan Baez, Mimi Fariña, their father the physicist Albert Baez, and my parents. I don’t like how the US government puts so much energy into fighting wars rather than solving our economic, social and environmental problems. It’s interesting that ‘systems of systems engineering’, as a field, is so heavily dominated by the US military. It’s an important subject that could be useful in many ways. We need it for better energy grids, better adaptation to climate change, and so on. I dream of using it to develop ‘ecotechnology’: technology that works with nature instead of trying to battle it and defeat it. But it seems the US doesn’t have the money, or the risk-taking spirit, to fund applications of category theory to those subjects.

On the other hand, I was attracted by the prospect of using category theory to design complex adaptive systems—and using it not just to tackle foundational issues, but also concrete challenges. I liked the idea of working with a team of people who are more practical than me. In this project, a big part of my job would be to write and publish papers: that’s something I can do. But Metron had other people who would try to create prototypes of software for helping the Coast Guard design search and rescue missions.

So I was torn.

In fact, because of my qualms, I’d already turned down an offer from another company that was writing a proposal for the CASCADE program. But the Metron project seemed slightly more attractive—I’m not sure why, perhaps because it was described to me in a more concrete way. And unlike that other company, Metron has a large existing body of software for evaluating complex systems, which should help me focus my theoretical ideas. The interaction between theory and practice can make theory a lot more interesting.

Something tipped the scales and I said yes. We applied for the grant, and we got it.

And so, an interesting adventure began. It will last for 3 years, and I’ll say more about it soon.


2 September, 2016

I’m now going to try to announce all my new writings in one place: on Twitter.

Why? Well, someone I respect said he’s been following my online writings, off and on, ever since the old days of This Week’s Finds. He wishes it were easier to find my new stuff all in one place. Right now it’s spread out over several locations:

Azimuth: serious posts on environmental issues and applied mathematics, fairly serious popularizations of diverse scientific subjects.

Google+: short posts of all kinds, mainly light popularizations of math, physics, and astronomy.

The n-Category Café: posts on mathematics, leaning toward category theory and other forms of pure mathematics that seem too intimidating for the above forums.

Visual Insight: beautiful pictures of mathematical objects, together with explanations.

Diary: more personal stuff, and polished versions of the more interesting Google+ posts, just so I have them on my own website.

It’s absurd to expect anyone to look at all these locations to see what I’m writing. Even more absurdly, I claimed I was going to quit posting on Google+, but then didn’t. So, I’ll try to make it possible to reach everything via Twitter.

Unlike Facebook, you don’t need to join Twitter to see what people put there. Furthermore, you can see it while blocking cookies. So, I feel okay about this approach to broadcasting my stuff to a larger audience. (Some of my best friends are very concerned with privacy. In fact, I lost touch with one when he said he would only communicate with me in encrypted emails.)

I currently have 4 followers.

Azimuth News (Part 5)

11 June, 2016

I’ve been rather quiet about Azimuth projects lately, because I’ve been too busy actually working on them. Here’s some of what’s happening:

Jason Erbele is finishing his thesis, entitled Categories in Control: Applied PROPs. He successfully gave his thesis defense on Wednesday June 8th, but he needs to polish it up some more. Building on the material in our paper “Categories in control”, he’s defined a category where the morphisms are signal flow diagrams. But interestingly, not all the diagrams you can draw are actually considered useful in control theory! So he’s also found a subcategory where the morphisms are the ‘good’ signal flow diagrams, the ones control theorists like. For these he studies familiar concepts like controllability and observability. When his thesis is done I’ll announce it here.

Brendan Fong is also finishing his thesis, called The Algebra of Open and Interconnected Systems. Brendan has already created a powerful formalism for studying open systems: the decorated cospan formalism. We’ve applied it to two examples: electrical circuits and Markov processes. Lately he’s been developing the formalism further, and this will appear in his thesis. Again, I’ll talk about it when he’s done!

Blake Pollard and I are writing a paper called “A compositional framework for open chemical reaction networks”. Here we take our work on Markov processes and throw in two new ingredients: dynamics and nonlinearity. Of course Markov processes have a dynamics, but in our previous paper when we ‘black-boxed’ them to study their external behaviour, we got a relation between flows and populations in equilibrium. Now we explain how to handle nonequilibrium situations as well.

Brandon Coya, Franciscus Rebro and I are writing a paper that might be called “The algebra of networks”. I’m not completely sure of the title, nor who the authors will be: Brendan Fong may also be a coauthor. But the paper explores the technology of PROPs as a tool for describing networks. As an application, we’ll give a new shorter proof of the functoriality of black-boxing for electrical circuits. This new proof also applies to nonlinear circuits. I’m really excited about how the theory of PROPs, first introduced in algebraic topology, is catching fire with all the new applications to network theory.

I expect all these projects to be done by the end of the summer. Near the end of June I’ll go to the Centre for Quantum Technologies, in Singapore. This will be my last summer there. My main job will be to finish up the two papers that I’m supposed to be writing.

There’s another paper that’s already done:

Kenny Courser has written a paper “A bicategory of decorated cospans“, pushing Brendan’s framework from categories to bicategories. I’ll explain this very soon here on this blog! One goal is to understand things like the coarse-graining of open systems: that is, the process of replacing a detailed description by a less detailed description. Since we treat open systems as morphisms, coarse-graining is something that goes from one morphism to another, so it’s naturally treated as a 2-morphism in a bicategory.

So, I’ve got a lot of new ideas to explain here, and I’ll start soon! I also want to get deeper into systems biology.

In the fall I’ve got a couple of short trips lined up:

• Monday November 14 – Friday November 18, 2016 – I’ve been invited by Yoav Kallus to visit the Santa Fe Institute. From the 16th to 18th I’ll attend a workshop on Statistical Physics, Information Processing and Biology.

• Monday December 5 – Friday December 9 – I’ve been invited to Berkeley for a workshop on Compositionality at the Simons Institute for the Theory of Computing, organized by Samson Abramsky, Lucien Hardy, and Michael Mislove. ‘Compositionality’ is a name for how you describe the behavior of a big complicated system in terms of the behaviors of its parts, so this is closely connected to my dream of studying open systems by treating them as morphisms that can be composed to form bigger open systems.

Here’s the announcement:

The compositional description of complex objects is a fundamental feature of the logical structure of computation. The use of logical languages in database theory and in algorithmic and finite model theory provides a basic level of compositionality, but establishing systematic relationships between compositional descriptions and complexity remains elusive. Compositional models of probabilistic systems and languages have been developed, but inferring probabilistic properties of systems in a compositional fashion is an important challenge. In quantum computation, the phenomenon of entanglement poses a challenge at a fundamental level to the scope of compositional descriptions. At the same time, compositionally has been proposed as a fundamental principle for the development of physical theories. This workshop will focus on the common structures and methods centered on compositionality that run through all these areas.

I’ll say more about both these workshops when they take place.

Interview (Part 2)

21 March, 2016

Greg Bernhardt runs an excellent website for discussing physics, math and other topics, called Physics Forums. He recently interviewed me there. Since I used this opportunity to explain a bit about the Azimuth Project and network theory, I thought I’d reprint the interview here. Here is Part 2.


Tell us about your experience with past projects like “This Week’s Finds in Mathematical Physics”.

I was hired by U.C. Riverside back in 1989. I was lonely and bored, since Lisa was back on the other coast. So, I spent a lot of evenings on the computer.

We had the internet back then—this was shortly after stone tools were invented—but the world-wide web hadn’t caught on yet. So, I would read and write posts on “newsgroups” using a program called a “news server”. You have to imagine me sitting in front of an old green­-on­-black cathode ray tube monitor with a large floppy disk drive, firing up the old modem to hook up to the internet.

In 1993, I started writing a series of posts on the papers I’d read. I called it “This Week’s Finds in Mathematical Physics”, which was a big mistake, because I couldn’t really write one every week. After a while I started using it to explain lots of topics in math and physics. I wrote 300 issues. Then I quit in 2010, when I started taking climate change seriously.

Share with us a bit about your current projects like Azimuth and the n­-Café.

The n­-Category Café is a blog I started with Urs Schreiber and the philosopher David Corfield back in 2006, when all three of us realized that n­-categories are the big wave that math is riding right now. We have a bunch more bloggers on the team now. But the n­-Café lost some steam when I quit work in n­-categories and Urs started putting most of his energy into two related projects: a wiki called the nLab and a discussion group called the nForum.

In 2010, when I noticed that global warming was like a huge wave crashing down on our civilization, I started the Azimuth Project. The goal was to create a focal point for scientists and engineers interested in saving the planet. It consists of a team of people, a blog, a wiki and a discussion group. It was very productive for a while: we wrote a lot of educational articles on climate science and energy issues. But lately I’ve realized I’m better at abstract math. So, I’ve been putting more time into working with my grad students.

What about climate change has captured your interest?

That’s like asking: “What about that huge tsunami rushing toward us has captured your interest?”

Around 2004 I started hearing news that sent chills up my spine ­ and what really worried me is how few people were talking about this news, at least in the US.

I’m talking about how we’re pushing the Earth’s climate out of the glacial cycle we’ve been in for over a million years, into brand new territory. I’m talking about things like how it takes hundreds or thousands of years for CO2 to exit the atmosphere after it’s been put in. And I’m talking about how global warming is just part of a bigger phenomenon: the Anthropocene. That’s a new geological epoch, in which the biosphere is rapidly changing due to human influences. It’s not just the temperature:

• About 1/4 of all chemical energy produced by plants is now used by humans.

• The rate of species going extinct is 100­–1000 times the usual background rate.

• Populations of large ocean fish have declined 90% since 1950.

• Humans now take more nitrogen from the atmosphere and convert it into nitrates than all other processes combined.

8­-9 times as much phosphorus is flowing into oceans than the natural background rate.

This doesn’t necessarily spell the end of our civilization, but it is something that we’ll all have to deal with.

So, I felt the need to alert people and try to dream up strategies to do something. That’s why in 2010 I quit work on n­-categories and started the Azimuth Project.

Carbon Dioxide Variations

You have life experience on both US coasts. Which do you prefer and why?

There are some differences between the coasts, but they’re fairly minor. The West Coast is part of the Pacific Rim, so there’s more Asian influence here. The seasons are less pronounced here, because winds in the northern hemisphere blow from west to east, and the oceans serve as a temperature control system. Down south in Riverside it’s a semi­-desert, so we can eat breakfast in our back yard in January! But I live here not because I like the West Coast more. This just happens to be where my wife Lisa and I managed to get a job.

What I really like is getting out of the US and seeing the rest of the world. When you’re at cremation ritual in Bali, or a Hmong festival in Laos, the difference between regions of the US starts seeming pretty small.

But I wasn’t a born traveler. When I spent my first summer in England, I was very apprehensive about making a fool of myself. The British have different manners, and their old universities are full of arcane customs and subtle social distinctions that even the British find terrifying. But after a few summers there I got over it. First, all around the world, being American gives you a license to be clueless. If you behave any better than the worst stereotypes, people are impressed. Second, I spend most of my time with mathematicians, who are incredibly forgiving of bad social behavior as long as you know interesting theorems.

By now I’ve gotten to feel very comfortable in England. The last couple of years I’ve spent time at the quantum computation group at Oxford–the group run by Bob Coecke and Samson Abramsky. I like talking to Jamie Vicary about n­categories and physics, and also my old friend Minhyong Kim, who is a number theorist there.

I was also very apprehensive when I first visited Paris. Everyone talks about how the waiters are rude, and so on. But I think that’s an exaggeration. Yes, if you go to cafés packed with boorish tourists, the waiters will treat you like a boorish tourist—so don’t do that. If you go to quieter places and behave politely, most people are friendly. Luckily Lisa speaks French and has some friends in Paris; that opens up a lot of opportunities. I don’t speak French, so I always feel like a bit of an idiot, but I’ve learned to cope. I’ve spent a few summers there working with Paul­-André Melliès on category theory and logic.

Yau Ma Tei Market - Hong Kong

Yau Ma Tei Market – Hong Kong

I was also intimidated when I first spent a summer in Hong Kong—and even more so when I spent a summer in Shanghai. Lisa speaks Chinese too: she’s more cultured than me, and she drags me to interesting places. My first day walking around Shanghai left me completely exhausted: everything was new! Walking down the street you see people selling frogs in a bucket, strange fungi and herbs, then a little phone shop where telephone numbers with lots of 8’s cost more, and so on: it’s a kind of cognitive assault.

But again, I came to enjoy it. And coming back to California, everything seemed a bit boring. Why is there so much land that’s not being used? Where are all the people? Why is the food so bland?

I’ve spent the most time outside the US in Singapore. Again, that’s because my wife and I both got job offers there, not because it’s the best place in the world. Compared to China it’s rather sterile and manicured. But it’s still a fascinating place. They’ve pulled themselves up from a British colonial port town to a multi­cultural country that’s in some ways more technologically advanced than the US. The food is great: it’s a mix of Chinese, Indian, Malay and pretty much everything else. There’s essentially no crime: you can walk around in the darkest alley in the worst part of town at 3 am and still feel safe. It’s interesting to live in a country where people from very different cultures are learning to live together and prosper. The US considers itself a melting-pot, but in Singapore they have four national languages: English, Mandarin, Malay and Tamil.

Most of all, it’s great to live in places where the culture and politics is different than where I grew up. But I’m trying to travel less, because it’s bad for the planet.

You’ve gained some fame for your “crackpot index”. What were your motivations for developing it? Any new criteria you’d add?

After the internet first caught on, a bunch of us started using it to talk about physics on the usenet newsgroup sci.physics.

And then, all of a sudden, crackpots around the world started joining in!

Before this, I don’t think anybody realized how many people had their own personal theories of physics. You might have a crazy uncle who spent his time trying to refute special relativity, but you didn’t realize there were actually thousands of these crazy uncles.

As I’m sure you know here at Physics Forums, crackpots naturally tend to drive out more serious conversations. If you have some people talking about the laws of black hole thermodynamics, and some guy jumps in and says that the universe is a black hole, everyone will drop what they’re doing and argue with that guy. It’s irresistible. It reminds me of how when someone brings a baby to a party, everyone will start cooing to the baby. But it’s worse.

When physics crackpots started taking over the usenet newsgroup sci.physics, I discovered that they had a lot of features in common. The Crackpot Index summarizes these common features. Whenever I notice a new pattern, I add it.

For example: if someone starts comparing themselves to Galileo and says the physics establishment is going after them like the Inquisition, I guarantee you that they’re a crackpot. Their theories could be right—but unfortunately, they’ve got delusions of grandeur and a persecution complex.

It’s not being wrong that makes someone a crackpot. Being a full­-fledged crackpot is the endpoint of a tragic syndrome. Someone starts out being a bit too confident that they can revolutionize physics without learning it first. In fact, many young physicists go through this stage! But the good ones react to criticism by upping their game. The ones who become crackpots just brush it off. They come up with an idea that they think is great, and when nobody likes it, they don’t say “okay, I need to learn more.” Instead, they make up excuses: nobody understands me, maybe there’s a conspiracy at work, etc. The excuses get more complicated with each rebuff, and it gets harder and harder for them to back down and say “whoops, I was wrong”.

When I wrote the Crackpot Index, I thought crackpots were funny. Alexander Abian claimed all the world’s ills would be cured if we blew up the Moon. Archimedes Plutonium thinks the Universe is a giant plutonium atom. These ideas are funny. But now I realize how sad it is that someone can start with an passion for physics and end up in this kind of trap. They almost never escape.

Who are some of your math and physics heroes of the past and of today?

Wow, that’s a big question! I think every scientist needs to have heroes. I’ve had a lot.

Marie Curie

Marie Curie

When I was a kid, I was in love with Marie Curie. I wanted to marry a woman like her: someone who really cared about science. She overcame huge obstacles to get a degree in physics, discovered not one but two new elements, often doing experiments in her own kitchen—and won not one but two Nobel prizes. She was a tragic figure in many ways. Her beloved husband Pierre, a great physicist in his own right, slipped and was run over by a horse­-drawn cart, dying instantly when the wheels ran over his skull. She herself probably died from her experiments with radiation. But this made me love her all the more.

Later my big hero was Einstein. How could any physicist not have Einstein as a hero? First he came up with the idea that light comes in discrete quanta: photons. Then, two months later, he used Brownian motion to figure out the size of atoms. One month after that: special relativity, unifying space and time! Three months later, the equivalence between mass and energy. And all this was just a warmup for his truly magnificent theory of general relativity, explaining gravity as the curvature of space and time. He truly transformed our vision of the Universe. And then, in his later years, the noble and unsuccessful search for a unified field theory. As a friend of mine put it, what matters here is not that he failed: what matters is that he set physics a new goal, more ambitious than any goal it had before.

Later it was Feynman. As I mentioned, my uncle gave me Feynman’s Lectures on Physics. This is how I first learned Maxwell’s equations, special relativity, quantum mechanics. His way of explaining things with a minimum of jargon, getting straight to the heart of every issue, is something I really admire. Later I enjoyed his books like Surely You Must Be Joking. Still later I learned enough to be impressed by his work on QED.

But when you read his autobiographical books, you can see that he was a bit too obsessed with pretending to be a fun­-loving ordinary guy. A fun­-loving ordinary guy who just happens to be smarter than everyone else. In short, a self­-absorbed showoff. He could also be pretty mean to women—and in that respect, Einstein was even worse. So our heroes should not be admired uncritically.

Alexander Grothendieck

Alexander Grothendieck

A good example is Alexander Grothendieck. I guess he’s my main math hero these days. To solve concrete problems like the Weil conjectures, he avoided brute force techniques and instead developed revolutionary new concepts that gently dissolved those problems. And these new concepts turned out to be much more important than the problems that motivated him. I’m talking about abelian categories, schemes, topoi, stacks, things like that. Everyone who really wants to understand math at a deep level has got to learn these concepts. They’re beautiful and wonderfully simple—but not easy to master. You have to really change your world view to understand them, just like general relativity or quantum mechanics. You have to rewire your neurons.

At his peak, Grothendieck seemed almost superhuman. It seems he worked almost all day and all night, bouncing his ideas off the other amazing French algebraic geometers. Apparently 20,000 pages of his writings remain unpublished! But he became increasingly alienated from the mathematical establishment and eventually disappeared completely, hiding in a village near the Pyrenees.

Which groundbreaking advances in science and math are you most looking forward to?

I’d really like to see progress in figuring out the fundamental laws of physics. Ideally, I’d like to know the Theory of Everything. Of course, we don’t even know that there is one! There could be an endless succession of deeper and deeper realizations to be had about the laws of physics, with no final answer.

If we ever do discover the Theory of Everything, that won’t be the end of the story. It could be just the beginning. For example, next we could ask why this particular theory governs our Universe. Is it necessary, or contingent? People like to chat about this puzzle already, but I think it’s premature. I think we should find the Theory of Everything first.

Unfortunately, right now fundamental physics is in a phase of being “stuck”. I don’t expect to see the Theory of Everything in my lifetime. I’d be happy to see any progress at all! There are dozens of very basic things we don’t understand.

When it comes to math, I expect that people will have their hands full this century redoing the foundations using ∞-categories, and answering some of the questions that come up when you do this. The crowd working on “homotopy type theory” is making good progress–but so far they’re mainly thinking about ∞-groupoids, which are a very special sort of ∞-category. When we do all of math using ∞-categories, it will be a whole new ballgame.

And then there’s the question of whether humanity will figure out a way to keep from ruining the planet we live on. And the question of whether we’ll succeed in replacing ourselves with something more intelligent—or even wiser.

The Milky Way and Andromeda Nebula after their first collision, 4 billion years from now

The Milky Way and Andromeda Nebula after their first collision, 4 billion years from now

Here’s something cool: red dwarf stars will keep burning for 10 trillion years. If we, or any civilization, can settle down next to one of those, there will be plenty of time to figure things out. That’s what I hope for.

But some of my friends think that life always uses up resources as fast as possible. So one of my big questions is whether intelligent life will develop the patience to sit around and think interesting thoughts, or whether it will burn up red dwarf stars and every other source of energy as fast as it can, as we’re doing now with fossil fuels.

What does the future hold for John Baez? What are your goals?

What the future holds for me, primarily, is death.

That’s true of all of us—or at least most of us. While some hope that technology will bring immortality, or at least a much longer life, I bet most of us are headed for death fairly soon. So I try to make the most of the time I have.

I’m always re­-evaluating what I should do. I used to spend time thinking about quantum gravity and n­-categories. But quantum gravity feels stuck, and n­-category theory is shooting forward so fast that my help is no longer needed.

Climate change is hugely important, and nobody really knows what to do about it. Lots of people are trying lots of different things. Unfortunately I’m no better than the rest when it comes to the most obvious strategies—like politics, or climate science, or safer nuclear reactors, or better batteries and photocells.

The trick is finding things you can do better than other people. Right now for me that means thinking about networks and biology in a very abstract way. I’m inspired by this remark by Patten and Witkamp:

To understand ecosystems, ultimately will be to understand networks.

So that’s my goal for the next five years or so. It’s probably not be the best thing anyone can do to prepare for the Middle Anthropocene. But it may be the best thing I can do: use the math I know to help people understand the biosphere.

It may seem like I keep jumping around: from quantum gravity to n-categories to biology. But I keep wanting to think about networks, and how they change in time.

At some point I hope to retire and become a bit more of a self­-indulgent wastrel. I could write a fun book about group theory in geometry and physics, and a fun book about the octonions. I might even get around to spending more time on music!

John Baez in Namo Gorge, Gansu

John Baez