New IPCC Report (Part 1)

7 April, 2014

guest post by Steve Easterbrook

In October, I trawled through the final draft of this report, which was released at that time:

• Intergovernmental Panel on Climate Change (IPCC), Climate Change 2013: The Physical Science Basis.

Here’s what I think are its key messages:

  1. The warming is unequivocal.
  2. Humans caused the majority of it.
  3. The warming is largely irreversible.
  4. Most of the heat is going into the oceans.
  5. Current rates of ocean acidification are unprecedented.
  6. We have to choose which future we want very soon.
  7. To stay below 2°C of warming, the world must become carbon negative.
  8. To stay below 2°C of warming, most fossil fuels must stay buried in the ground.

I’ll talk about the first of these here, and the rest in future parts—click to get to any part you want. But before I start, a little preamble.

The IPCC was set up in 1988 as a UN intergovernmental body to provide an overview of the science. Its job is to assess what the peer-reviewed science says, in order to inform policymaking, but it is not tasked with making specific policy recommendations. The IPCC and its workings seem to be widely misunderstood in the media. The dwindling group of people who are still in denial about climate change particularly like to indulge in IPCC-bashing, which seems like a classic case of ‘blame the messenger’. The IPCC itself has a very small staff (no more than a dozen or so people). However, the assessment reports are written and reviewed by a very large team of scientists (several thousands), all of whom volunteer their time to work on the reports. The scientists are are organised into three working groups: WG1 focuses on the physical science basis, WG2 focuses on impacts and climate adaptation, and WG3 focuses on how climate mitigation can be achieved.

In October, the WG1 report was released as a final draft, although it was accompanied by bigger media event around the approval of the final wording on the WG1 “Summary for Policymakers”. The final version of the full WG1 report, plus the WG2 and WG3 reports, have come out since then.

I wrote about the WG1 draft in October, but John has solicited this post for Azimuth only now. By now, the draft I’m talking about here has undergone some minor editing/correcting, and some of the figures might have ended up re-drawn. Even so, most of the text is unlikely to have changed, and the major findings can be considered final.

In this post and the parts to come I’ll give my take on the most important findings, along with a key figure to illustrate each.

(1) The warming is unequivocal

The text of the summary for policymakers says:

Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, sea level has risen, and the concentrations of greenhouse gases have increased.

Observed globally averaged combined land and ocean surface temperature anomaly 1850-2012. The top panel shows the annual values; the bottom panel shows decadal means. (Note: Anomalies are relative to the mean of 1961-1990).

(Fig SPM.1) Observed globally averaged combined land and ocean surface temperature anomaly 1850-2012. The top panel shows the annual values; the bottom panel shows decadal means. (Note: Anomalies are relative to the mean of 1961-1990).

Unfortunately, there has been much play in the press around a silly idea that the warming has “paused” in the last decade. If you squint at the last few years of the top graph, you might be able to convince yourself that the temperature has been nearly flat for a few years, but only if you cherry pick your starting date, and use a period that’s too short to count as climate. When you look at it in the context of an entire century and longer, such arguments are clearly just wishful thinking.

The other thing to point out here is that the rate of warming is unprecedented:

With very high confidence, the current rates of CO2, CH4 and N2O rise in atmospheric concentrations and the associated radiative forcing are unprecedented with respect to the highest resolution ice core records of the last 22,000 years

and there is

medium confidence that the rate of change of the observed greenhouse gas rise is also unprecedented compared with the lower resolution records of the past 800,000 years.

In other words, there is nothing in any of the ice core records that is comparable to what we have done to the atmosphere over the last century. The earth has warmed and cooled in the past due to natural cycles, but never anywhere near as fast as modern climate change.

You can download all of Climate Change 2013: The Physical Science Basis here. It’s also available chapter by chapter here:

  1. Front Matter
  2. Summary for Policymakers
  3. Technical Summary
    1. Supplementary Material


  1. Introduction
  2. Observations: Atmosphere and Surface
    1. Supplementary Material
  3. Observations: Ocean
  4. Observations: Cryosphere
    1. Supplementary Material
  5. Information from Paleoclimate Archives
  6. Carbon and Other Biogeochemical Cycles
    1. Supplementary Material
  7. Clouds and Aerosols

    1. Supplementary Material
  8. Anthropogenic and Natural Radiative Forcing
    1. Supplementary Material
  9. Evaluation of Climate Models
  10. Detection and Attribution of Climate Change: from Global to Regional
    1. Supplementary Material
  11. Near-term Climate Change: Projections and Predictability
  12. Long-term Climate Change: Projections, Commitments and Irreversibility
  13. Sea Level Change
    1. Supplementary Material
  14. Climate Phenomena and their Relevance for Future Regional Climate Change
    1. Supplementary Material


  1. Annex I: Atlas of Global and Regional Climate Projections
    1. Supplementary Material: RCP2.6, RCP4.5, RCP6.0, RCP8.5
  2. Annex II: Climate System Scenario Tables
  3. Annex III: Glossary
  4. Annex IV: Acronyms
  5. Annex V: Contributors to the WGI Fifth Assessment Report
  6. Annex VI: Expert Reviewers of the WGI Fifth Assessment Report

Markov Models of Social Change (Part 2)

5 March, 2014

guest post by Vanessa Schweizer

This is my first post to Azimuth. It’s a companion to the one by Alaistair Jamieson-Lane. I’m an assistant professor at the University of Waterloo in Canada with the Centre for Knowledge Integration, or CKI. Through our teaching and research, the CKI focuses on integrating what appears, at first blush, to be drastically different fields in order to make the world a better place. The very topics I would like to cover today, which are mathematics and policy design, are an example of our flavour of knowledge integration. However, before getting into that, perhaps some background on how I got here would be helpful.

The conundrum of complex systems

For about eight years, I have focused on various problems related to long-term forecasting of social and technological change (long-term meaning in excess of 10 years). I became interested in these problems because they are particularly relevant to how we understand and respond to global environmental changes such as climate change.

In case you don’t know much about global warming or what the fuss is about, part of what makes the problem particularly difficult is that the feedback from the physical climate system to human political and economic systems is exceedingly slow. It is so slow, that under traditional economic and political analyses, an optimal policy strategy may appear to be to wait before making any major decisions – that is, wait for scientific knowledge and technologies to improve, or at least wait until the next election [1]. Let somebody else make the tough (and potentially politically unpopular) decisions!

The problem with waiting is that the greenhouse gases that scientists are most concerned about stay in the atmosphere for decades or centuries. They are also churned out by the gigatonne each year. Thus the warming trends that we have experienced for the past 30 years, for instance, are the cumulative result of emissions that happened not only recently but also long ago—in the case of carbon dioxide, as far back as the turn of the 20th century. The world in the 1910s was quainter than it is now, and as more economies around the globe industrialize and modernize, it is natural to wonder: how will we manage to power it all? Will we still rely so heavily on fossil fuels, which are the primary source of our carbon dioxide emissions?

Such questions are part of what makes climate change a controversial topic. Present-day policy decisions about energy use will influence the climatic conditions of the future, so what kind of future (both near-term and long-term) do we want?

Futures studies and trying to learn from the past

Many approaches can be taken to answer the question of what kind of future we want. An approach familiar to the political world is for a leader to espouse his or her particular hopes and concerns for the future, then work to convince others that those ideas are more relevant than someone else’s. Alternatively, economists do better by developing and investigating different simulations of economic developments over time; however, the predictive power of even these tools drops off precipitously beyond the 10-year time horizon.

The limitations of these approaches should not be too surprising, since any stockbroker will say that when making financial investments, past performance is not necessarily indicative of future results. We can expect the same problem with rhetorical appeals, or economic models, that are based on past performances or empirical (which also implies historical) relationships.

A different take on foresight

A different approach avoids the frustration of proving history to be a fickle tutor for the future. By setting aside the supposition that we must be able to explain why the future might play out a particular way (that is, to know the ‘history’ of a possible future outcome), alternative futures 20, 50, or 100 years hence can be conceptualized as different sets of conditions that may substantially diverge from what we see today and have seen before. This perspective is employed in cross-impact balance analysis, an algorithm that searches for conditions that can be demonstrated to be self-consistent [3].

Findings from cross-impact balance analyses have been informative for scientific assessments produced by the Intergovernmental Panel on Climate Change Research, or IPCC. To present a coherent picture of the climate change problem, the IPCC has coordinated scenario studies across economic and policy analysts as well as climate scientists since the 1990s. Prior to the development of the cross-impact balance method, these researchers had to do their best to identify appropriate ranges for rates of population growth, economic growth, energy efficiency improvements, etc. through their best judgment.

A retrospective using cross-impact balances on the first Special Report on Emissions Scenarios found that the researchers did a good job in many respects. However, they underrepresented the large number of alternative futures that would result in high greenhouse gas emissions in the absence of climate policy [4].

As part of the latest update to these coordinated scenarios, climate change researchers decided it would be useful to organize alternative futures according socio-economic conditions that pose greater or fewer challenges to mitigation and adaptation. Mitigation refers to policy actions that decrease greenhouse gas emissions, while adaptation refers to reducing harms due to climate change or to taking advantage of benefits. Some climate change researchers argued that it would be sufficient to consider alternative futures where challenges to mitigation and adaptation co-varied, e.g. three families of futures where mitigation and adaptation challenges would be low, medium, or high.

Instead, cross-impact balances revealed that mixed-outcome futures—such as socio-economic conditions simultaneously producing fewer challenges to mitigation but greater challenges to adaptation—could not be completely ignored. This counter-intuitive finding, among others, brought the importance of quality of governance to the fore [5].

Although it is generally recognized that quality of governance—e.g. control of corruption and the rule of law—affects quality of life [6], many in the climate change research community have focused on technological improvements, such as drought-resistant crops, or economic incentives, such as carbon prices, for mitigation and adaptation. The cross-impact balance results underscored that should global patterns of quality of governance across nations take a turn for the worse, poor governance could stymie these efforts. This is because the influence of quality of governance is pervasive; where corruption is permitted at the highest levels of power, it may be permitted at other levels as well—including levels that are responsible for building schools, teaching literacy, maintaining roads, enforcing public order, and so forth.

The cross-impact balance study revealed this in the abstract, as summarized in the example matrices below. Alastair included a matrix like these in his post, where he explained that numerical judgments in such a matrix can be used to calculate the net impact of simultaneous influences on system factors. My purpose in presenting these matrices is a bit different, as the matrix structure can also explain why particular outcomes behave as system attractors.

In this example, a solid light gray square means that the row factor directly influences the column factor some amount, while white space means that there is no direct influence:

Dark gray squares along the diagonal have no meaning, since everything is perfectly correlated to itself. The pink squares highlight the rows for the factors “quality of governance” and “economy.” The importance of these rows is more apparent here; the matrix above is a truncated version of this more detailed one:

(Click to enlarge.)

The pink rows are highlighted because of a striking property of these factors. They are the two most influential factors of the system, as you can see from how many solid squares appear in their rows. The direct influence of quality of governance is second only to the economy. (Careful observers will note that the economy directly influences quality of governance, while quality of governance directly influences the economy). Other scholars have meticulously documented similar findings through observations [7].

As a method for climate policy analysis, cross-impact balances fill an important gap between genius forecasting (i.e., ideas about the far-off future espoused by one person) and scientific judgments that, in the face of deep uncertainty, are overconfident (i.e. neglecting the ‘fat’ or ‘long’ tails of a distribution).

Wanted: intrepid explorers of future possibilities

However, alternative visions of the future are only part of the information that’s needed to create the future that is desired. Descriptions of courses of action that are likely to get us there are also helpful. In this regard, the post by Jamieson-Lane describes early work on modifying cross-impact balances for studying transition scenarios rather than searching primarily for system attractors.

This is where you, as the mathematician or physicist, come in! I have been working with cross-impact balances as a policy analyst, and I can see the potential of this method to revolutionize policy discussions—not only for climate change but also for policy design in general. However, as pointed out by entrepreneurship professor Karl T. Ulrich, design problems are NP-complete. Those of us with lesser math skills can be easily intimidated by the scope of such search problems. For this reason, many analysts have resigned themselves to ad hoc explorations of the vast space of future possibilities. However, some analysts like me think it is important to develop methods that do better. I hope that some of you Azimuth readers may be up for collaborating with like-minded individuals on the challenge!


The graph of carbon emissions is from reference [2]; the pictures of the matrices are adapted from reference [5]:

[1] M. Granger Morgan, Milind Kandlikar, James Risbey and Hadi Dowlatabadi, Why conventional tools for policy analysis are often inadequate for problems of global change, Climatic Change 41 (1999), 271–281.

[2] T.F. Stocker et al., Technical Summary, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2013), T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (eds.) Cambridge University Press, New York.

[3] Wolfgang Weimer-Jehle, Cross-impact balances: a system-theoretical approach to cross-impact analysis, Technological Forecasting & Social Change 73 (2006), 334–361.

[4] Vanessa J. Schweizer and Elmar Kriegler, Improving environmental change research with systematic techniques for qualitative scenarios, Environmental Research Letters 7 (2012), 044011.

[5] Vanessa J. Schweizer and Brian C. O’Neill, Systematic construction of global socioeconomic pathways using internally consistent element combinations, Climatic Change 122 (2014), 431–445.

[6] Daniel Kaufman, Aart Kray and Massimo Mastruzzi, Worldwide Governance Indicators (2013), The World Bank Group.

[7] Daron Acemoglu and James Robinson, The Origins of Power, Prosperity, and Poverty: Why Nations Fail. Website.

Life’s Struggle to Survive

19 December, 2013

Here’s the talk I gave at the SETI Institute:

When pondering the number of extraterrestrial civilizations, it is worth noting that even after it got started, the success of life on Earth was not a foregone conclusion. In this talk, I recount some thrilling episodes from the history of our planet, some well-documented but others merely theorized: our collision with the planet Theia, the oxygen catastrophe, the snowball Earth events, the Permian-Triassic mass extinction event, the asteroid that hit Chicxulub, and more, including the massive environmental changes we are causing now. All of these hold lessons for what may happen on other planets!

To watch the talk, click on the video above. To see
slides of the talk, click here!

Here’s a mistake in my talk that doesn’t appear in the slides: I suggested that Theia started at the Lagrange point in Earth’s orbit. After my talk, an expert said that at that time, the Solar System had lots of objects with orbits of high eccentricity, and Theia was probably one of these. He said the Lagrange point theory is an idiosyncratic theory, not widely accepted, that somehow found its way onto Wikipedia.

Another issue was brought up in the questions. In a paper in Science, Sherwood and Huber argued that:

Any exceedence of 35 °C for extended periods should
induce hyperthermia in humans and other mammals, as dissipation of metabolic heat becomes impossible. While this never happens now, it would begin to occur with global-mean warming of about 7 °C, calling the habitability of some regions into question. With 11-12 °C warming, such regions would spread to encompass the majority of the human population as currently distributed. Eventual warmings of 12 °C are
possible from fossil fuel burning.

However, the Paleocene-Eocene Thermal Maximum seems to have been even hotter:

So, the question is: where did mammals live during this period, which mammals went extinct, if any, and does the survival of other mammals call into question Sherwood and Huber’s conclusion?

Global Climate Change Negotiations

28 October, 2013


There were many interesting talks at the Interdisciplinary Climate Change Workshop last week—too many for me to describe them all in detail. But I really must describe the talks by Radoslav Dimitrov. They were full of important things I didn’t know. Some are quite promising.

Radoslav S. Dimitrov is a professor at the Department of Political Science at Western University. What’s interesting is that he’s also been a delegate for the European Union at the UN climate change negotiations since 1990! His work documents the history of climate negotiations from behind closed doors.

Here are some things he said:

• In international diplomacy, there is no questioning the reality and importance of human-caused climate change. The question is just what to do about it.

• Governments go through every line of the IPCC reports twice. They cannot add anything the scientists have written, but they can delete things. All governments have veto power. This makes the the IPCC reports more conservative than they otherwise would be: “considerably diluted”.

• The climate change negotiations have surprised political scientists in many ways:

1) There is substantial cooperation even without the USA taking the lead.

2) Developing countries are accepting obligations, with many overcomplying.

3) There has been action by many countries and subnational entities without any treaty obligations.

4) There have been repeated failures of negotiation despite policy readiness.

• In 2011, China and Saudi Arabia rejected the final agreement at Durban as inadequate. Only Canada, the United States and Australia had been resisting stronger action on climate change. Canada abandoned the Kyoto Protocol the day after the collapse of negotiations at Durban. They publicly blamed China, India and Brazil, even though Brazil had accepted dramatic emissions cuts and China had, for the first time, accepted limits on emissions. Only India had taken a “hardline” attitude. Publicly blaming some other country for the collapse of negotiations is a no-no in diplomacy, so the Chinese took this move by Canada as a slap in the face. In return, they blamed Canada and “the West” for the collapse of Durban.

• Dimitrov is studying the role of persuasion in diplomacy, recording and analyzing hundreds of hours of discussions. Countries try to change each other’s minds, not just behavior.

• The global elite do not see climate change negotiations as an environmental issue. Instead, they feel they are “negotiating the future economy”. They focus on the negative economic consequences of inaction, and the economic benefits of climate action.

• In particular, the EU has managed to persuade many countries that climate change is worth tackling now. They do this with economic, not environmental arguments. For example, they argue that countries who take the initiative will have an advantage in future employment, getting most of the “green jobs”. Results include China’s latest 5-year plan, which some have called “the most progressive legislation in history”, and also Japan’s plan for a 60-80% reduction of carbon emissions. The EU itself also expects big returns on investment in climate change.

I apologize for any oversimplifications or downright errors in my notes here.


You can see some slides for Dimitrov’s talks here:

• Radoslav S. Dimitrov, A climate of change.

For more, try reading this article, which is free online:

• Radoslav S. Dimitrov, Inside Copenhagen: the state of climate governance, Global Environmental Politics 10 (2010), 18–24.

and these more recent book chapters, which are apparently not as easy to get:

• Radoslav S. Dimitrov, Environmental diplomacy, in Handbook of Global Environmental Politics, edited by Paul Harris, Routledge, forthcoming as of 2013.

• Radoslav S. Dimitrov, International negotiations, in Handbook of Global Climate and Environmental Policy, edited by Robert Falkner, Wiley-Blackwell forthcoming as of 2013.

• Radoslav S. Dimitrov, Persuasion in world politics: The UN climate change negotiations, in Handbook of Global Environmental Politics, edited by Peter Dauvergne, Edward Elgar Publishing, Cheltenham, UK, 2012.

• Radoslav S. Dimitrov, American prosperity and the high politics of climate change, in Prospects for a Post-American World, edited by Sabrina Hoque and Sean Clark, University of Toronto Press, Toronto, 2012.

What To Do About Climate Change?

23 October, 2013

Here are the slides for my second talk in the Interdisciplinary Climate Change Workshop at the Balsillie School of International Affairs:

What To Do About Climate Change?

Like the first it’s just 15 minutes long, so it’s very terse.

I start by noting that slowing the rate of carbon burning won’t stop global warming: most carbon dioxide stays in the air over a century, though individual molecules come and go. Global warming is like a ratchet.

So, we will:

1) leave fossil fuels unburnt,

2) sequester carbon,

3) actively cool the Earth, and/or

4) live with a hotter climate.

Of course we may do a mix of these…. though we’ll certainly do some of option 4), and we might do only this one. My goal in this short talk is not mainly to argue for a particular mix! I mainly want to present some information about the various options.

I do not say anything about the best ways to do option 4); I merely provide some arguments that we’ll wind up doing a lot of this one… because I’m afraid some of the participants in the workshop may be in denial about that.

I also argue that we should start doing research on option 3), because like it or not, I think people are going to become very interested in geoengineering, and without enough solid information about it, people are likely to make bad mistakes: for example, diving into ambitious projects out of desperation.

As usual, if you click on a phrase in blue in this talk, you can get more information.

I want to really thank everyone associated with Azimuth for helping find and compile the information used in this talk! It’s really been a team effort!

What is Climate Change?

21 October, 2013

Here are the slides for a 15-minute talk I’m giving on Friday for the Interdisciplinary Climate Change Workshop at the Balsillie School of International Affairs:

What is Climate Change?

This will be the first talk of the workshop. Many participants are focused on diplomacy and economics. None are officially biologists or ecologists. So, I want to set the stage with a broad perspective that fits humans into the biosphere as a whole.

I claim that climate change is just one aspect of something bigger: a new geological epoch, the Anthropocene.

I start with evidence that human civilization is having such a big impact on the biosphere that we’re entering a new geological epoch.

Then I point out what this implies. Climate change is not an isolated ‘problem’ of the sort routinely ‘solved’ by existing human institutions. It is part of a shift from the exponential growth phase of human impact on the biosphere to a new, uncharted phase.

In this new phase, institutions and attitudes will change dramatically, like it or not:

Before we could treat ‘nature’ as distinct from ‘civilization’. Now, there is no nature separate from civilization.

Before, we might imagine ‘economic growth’ an almost unalloyed good, with many externalities disregarded. Now, many forms of growth have reached the point where they push the biosphere toward tipping points.

In a separate talk I’ll say a bit about ‘what we can do about it’. So, nothing about that here. You can click on words in blue to see sources for the information.

The EU’s Biggest Renewable Energy Source

18 September, 2013

Puzzle. The European Union has a goal of producing 20% of all its energy from renewable sources by 2020. Right now, which source of renewable energy does the EU use most?

1) wind
2) solar
3) hydropower
4) tides
5) geothermal
6) trash
7) wood
8) bureaucrats in hamster wheels
9) trolls

Think about it a bit before reading further!

The Economist writes:

Which source of renewable energy is most important to the European Union? Solar power, perhaps? (Europe has three-quarters of the world’s total installed capacity of solar photovoltaic energy.) Or wind? (Germany trebled its wind-power capacity in the past decade.) The answer is neither. By far the largest so-called renewable fuel used in Europe is wood.

In its various forms, from sticks to pellets to sawdust, wood (or to use its fashionable name, biomass) accounts for about half of Europe’s renewable-energy consumption. In some countries, such as Poland and Finland, wood meets more than 80% of renewable-energy demand. Even in Germany, home of the Energiewende (energy transformation) which has poured huge subsidies into wind and solar power, 38% of non-fossil fuel consumption comes from the stuff.

I haven’t yet found confirmation of this on the EU’s own websites, but this page:

• Eurostat, Renewable energy statistics.

says that in 2010, 67.6% of primary renewable energy production in the EU came from “biomass and waste”. This is at least compatible with The Economist‘s claims. Hydropower accounted for 18.9%, wind for 7.7%, geothermal for 3.5% and solar for just 2.2%.

It seems that because wood counts as renewable energy in the EU, and there are big incentives to increase the use of renewable energy, demand for wood is booming. According to the Economist, imports of wood pellets into the EU rose by 50% in 2010 alone. They say that thanks to Chinese as well as EU demand, global trade in these pellets could rise five- or sixfold from 10-12 million tonnes a year now to 60 million tonnes by 2020.

Wood from tree farms may be approximately carbon-neutral, but turning it into pellets takes energy… and importing wood pellets takes more. The EU may be making a mistake here.

Or maybe not.

Either way, it’s interesting that we always hear about the rising use of wind and solar in the EU, but not about wood.

Can you find more statistics or well-informed discussions about wood as a renewable energy source?

Here’s the article:

Wood: the fuel of the future, The Economist, 6 April 2013.

If its facts are wrong, I’d like to know.

P.S. – This is the 400th post on this blog!


Get every new post delivered to your Inbox.

Join 3,092 other followers