I, Robot

24 January, 2012

On 13 February 2012, I will give a talk at Google in the form of a robot. I will look like this:


My talk will be about “Energy, the Environment and What We Can Do.” Since I think we should cut unnecessary travel, I decided to stay here in Singapore and use a telepresence robot instead of flying to California.

I thank Mike Stay for arranging this at Google, and I especially thank Trevor Blackwell and everyone else at Anybots for letting me use one of their robots!

I believe Google will film this event and make a video available. But I hope reporters attend, because it should be fun, and I plan to describe some ways we can slash carbon emissions.

More detail: I will give this talk at 4 pm Monday, February 13, 2012 in the Paramaribo Room on the Google campus (Building 42, Floor 2). Visitors and reporters are invited, but they need to check in at the main visitor’s lounge in Building 43, and they’ll need to be escorted to and from the talk, so someone will pick them up 10 or 15 minutes before the talk starts.

Energy, the Environment and What We Can Do

Abstract: Our heavy reliance on fossil fuels is causing two serious problems: global warming, and the decline of cheaply available oil reserves. Unfortunately the second problem will not cancel out the first. Each one individually seems extremely hard to solve, and taken
together they demand a major worldwide effort starting now. After an overview of these problems, we turn to the question: what can we do about them?

I also need help from all of you reading this! I want to talk about solutions, not just problems—and given my audience, and the political deadlock in the US, I especially want to talk about innovative solutions that come from individuals and companies, not governments.

Can changing whole systems produce massive cuts in carbon emissions, in a way that spreads virally rather than being imposed through top-down directives? It’s possible. Curtis Faith has some inspiring thoughts on this:

I’ve been looking on various transportation and energy and environment issues for more than 5 years, and almost no one gets the idea that we can radically reduce consumption if we look at the complete systems. In economic terms, we currently have a suboptimal Nash Equilibrium with a diminishing pie when an optimal expanding pie equilibrium is possible. Just tossing around ideas a a very high level with back of the envelope estimates we can get orders of magnitude improvements with systemic changes that will make people’s lives better if we can loosen up the grip of the big corporations and government.

To borrow a physics analogy, the Nash Equilibrium is a bit like a multi-dimensional metastable state where the system is locked into a high energy configuration and any local attempts to make the change revert to the higher energy configuration locally, so it would require sufficient energy or energy in exactly the right form to move all the different metastable states off their equilibrium either simultaneously or in a cascade.

Ideally, we find the right set of systemic economic changes that can have a cascade effect, so that they are locally systemically optimal and can compete more effectively within the larger system where the Nash Equilibrium dominates. I hope I haven’t mixed up too many terms from too many fields and confused things. These terms all have overlapping and sometimes very different meaning in the different contexts as I’m sure is true even within math and science.

One great example is transportation. We assume we need electric cars or biofuel or some such thing. But the very assumption that a car is necessary is flawed. Why do people want cars? Give them a better alternative and they’ll stop wanting cars. Now, what that might be? Public transportation? No. All the money spent building a 2,000 kg vehicle to accelerate and decelerate a few hundred kg and then to replace that vehicle on a regular basis can be saved if we eliminate the need for cars.

The best alternative to cars is walking, or walking on inclined pathways up and down so we get exercise. Why don’t people walk? Not because they don’t want to but because our cities and towns have optimized for cars. Create walkable neighborhoods and give people jobs near their home and you eliminate the need for cars. I live in Savannah, GA in a very tiny place. I never use the car. Perhaps 5 miles a week. And even that wouldn’t be necessary with the right supplemental business structures to provide services more efficiently.

Or electricity for A/C. Everyone lives isolated in structures that are very inefficient to heat. Large community structures could be air conditioned naturally using various techniques and that could cut electricity demand by 50% for neighborhoods. Shade trees are better than insulation.

Or how about moving virtually entire cities to cooler climates during the hot months? That is what people used to do. Take a train North for the summer. If the destinations are low-resource destinations, this can be a huge reduction for the city. Again, getting to this state is hard without changing a lot of parts together.

These problems are not technical, or political, they are economic. We need the economic systems that support these alternatives. People want them. We’ll all be happier and use far less resources (and money). The economic system needs to be changed, and that isn’t going to happen with politics, it will happen with economic innovation. We tend to think of our current models as the way things are, but they aren’t. Most of the status quo is comprised of human inventions, money, fractional reserve banking, corporations, etc. They all brought specific improvements that made them more effective at the time they were introduce because of the conditions during those times. Our times too are different. Some new models will work much better for solving our current problems.

Your idea really starts to address the reason why people fly unnecessarily. This change in perspective is important. What if we went back to sailing ships? And instead of flying we took long leisurely educational seminar cruises on modern versions of sail yachts? What if we improved our trains? But we need to start from scratch and design new systems so they work together effectively. Why are we stuck with models of cities based on the 19th-century norms?

We aren’t, but too many people think we are because the scope of their job or academic career is just the piece of a system, not the system itself.

System level design thinking is the key to making the difference we need. Changes to the complete systems can have order of magnitude improvements. Changes to the parts will have us fighting for tens of percentages.

Do you know good references on ideas like this—preferably with actual numbers? I’ve done some research, but I feel I must be missing a lot of things.

This book, for example, is interesting:

• Michael Peters, Shane Fudge and Tim Jackson, editors, Low Carbon Communities: Imaginative Approaches to Combating Climate Change Locally, Edward Elgar Publishing Group, Cheltenham, UK, 2010.

but I wish it had more numbers on how much carbon emissions were cut by some of the projects they describe: Energy Conscious Households in Action, the HadLOW CARBON Community, the Transition Network, and so on.


The Best Climate Scientists

4 January, 2012

A physicist friend asks if there is someone in climate science who has made progress significant enough to deserve a Nobel Prize. It’s an interesting question. Any such prize would be amazingly controversial, but let’s shelve that and ask: who are the best climate scientists, the ones who have made truly dramatic progress?

Arrhenius is no longer with us, so he’s out.


Azimuth on Google Plus (Part 5)

1 January, 2012

Happy New Year! I’m back from Laos. Here are seven items, mostly from the Azimuth Circle on Google Plus:

1) Phil Libin is the boss of a Silicon Valley startup. When he’s off travelling, he uses a telepresence robot to keep an eye on things. It looks like a stick figure on wheels. Its bulbous head has two eyes, which are actually a camera and a laser. On its forehead is a screen, where you can see Libin’s face. It’s made by a company called Anybots, and it costs just $15,000.


I predict that within my life we’ll be using things like this to radically cut travel costs and carbon emissions for business and for conferences. It seems weird now, but so did telephones. Future models will be better to look at. But let’s try it soon!

• Laura Sydell No excuses: robots put you in two places at once, Weekend Edition Saturday, 31 December 2011.

Bruce Bartlett and I are already planning for me to use telepresence to give a lecture on mathematics and the environment at Stellenbosch University in South Africa. But we’d been planning to use old-fashioned videoconferencing technology.

Anybots is located in Mountain View, California. That’s near Google’s main campus. Can anyone help me set up a talk on energy and the environment at Google, where I use an Anybot?

(Or, for that matter, anywhere else around there?)

2) A study claims to have found a correlation between weather and the day of the week! The claim is that there are more tornados and hailstorms in the eastern USA during weekdays. One possible mechanism could be that aerosols from car exhaust help seed clouds.


I make no claims that this study is correct. But at the very least, it would be interesting to examine their use of statistics and see if it’s convincing or flawed:

• Thomas Bell and Daniel Rosenfeld, Why do tornados and hailstorms rest on weekends?, Journal of Geophysical Research 116 (2011), D20211.

Abstract. This study shows for the first time statistical evidence that when anthropogenic aerosols over the eastern United States during summertime are at their weekly mid-week peak, tornado and hailstorm activity there is also near its weekly maximum. The weekly cycle in summertime storm activity for 1995–2009 was found to be statistically significant and unlikely to be due to natural variability. It correlates well with previously observed weekly cycles of other measures of storm activity. The pattern of variability supports the hypothesis that air pollution aerosols invigorate deep convective clouds in a moist, unstable atmosphere, to the extent of inducing production of large hailstones and tornados. This is caused by the effect of aerosols on cloud drop nucleation, making cloud drops smaller and hydrometeors larger. According to simulations, the larger ice hydrometeors contribute to more hail. The reduced evaporation from the larger hydrometeors produces weaker cold pools. Simulations have shown that too cold and fast-expanding pools inhibit the formation of tornados. The statistical observations suggest that this might be the mechanism by which the weekly modulation in pollution aerosols is causing the weekly cycle in severe convective storms during summer over the eastern United States. Although we focus here on the role of aerosols, they are not a primary atmospheric driver of tornados and hailstorms but rather modulate them in certain conditions.

Here’s a discussion of it:

• Bob Yirka, New research may explain why serious thunderstorms and tornados are less prevalent on the weekends, PhysOrg, 22 December 2011.

3) And if you like to check how people use statistics, here’s a paper that would be incredibly important if its findings were correct:

• Joseph J. Mangano and Janette D. Sherman, An unexpected mortality increase in the United States follows arrival of the radioactive plume from Fukushima: is there a correlation?, International Journal of Health Services 42 (2012), 47–64.

The title has a question mark in it, but it’s been cited in very dramatic terms in many places, for example this video entitled “Peer reviewed study shows 14,000 U.S. deaths from Fukushima”:

Starting at 1:31 you’ll see an interview with one of the paper’s authors, Janette Sherman.

14,000 deaths in the US due to Fukushima? Wow! How did they get that figure? This quote from the paper explains how:

During weeks 12 to 25 [after the Fukushima disaster began], total deaths in 119 U.S. cities increased from 148,395 (2010) to 155,015 (2011), or 4.46 percent. This was nearly double the 2.34 percent rise in total deaths (142,006 to 145,324) in 104 cities for the prior 14 weeks, significant at p < 0.000001 (Table 2). This difference between actual and expected changes of +2.12 percentage points (+4.46% – 2.34%) translates to 3,286 “excess” deaths (155,015 × 0.0212) nationwide. Assuming a total of 2,450,000 U.S. deaths will occur in 2011 (47,115 per week), then 23.5 percent of deaths are reported (155,015/14 = 11,073, or 23.5% of 47,115). Dividing 3,286 by 23.5 percent yields a projected 13,983 excess U.S. deaths in weeks 12 to 25 of 2011.

Hmm. Can you think of some potential problems with this analysis?

In the interview, Janette Sherman also mentions increased death rates of children in British Columbia. Here’s the evidence the paper presents for that:

Shortly after the report [another paper by the authors] was issued, officials from British Columbia, Canada, proximate to the northwestern United States, announced that 21 residents had died of sudden infant death syndrome (SIDS) in the first half of 2011, compared with 16 SIDS deaths in all of the prior year. Moreover, the number of deaths from SIDS rose from 1 to 10 in the months of March, April, May, and June 2011, after Fukushima fallout arrived, compared with the same period in 2010. While officials could not offer any explanation for the abrupt increase, it coincides with our findings in the Pacific Northwest.

4) For the first time in 87 years, a wild gray wolf was spotted in California:

• Stephen Messenger, First gray wolf in 80 years enters California, Treehugger, 29 December 2011.

Researchers have been tracking this juvenile male using a GPS-enabled collar since it departed northern Oregon. In just a few weeks, it walked some 730 miles to California. It was last seen surfing off Malibu. Here is a photograph:

5) George Musser left the Centre for Quantum Technologies and returned to New Jersey, but not before writing a nice blog article explaining how the GRACE satellite uses the Earth’s gravitational field to measure the melting of glaciers:

• George Musser, Melting glaciers muck up Earth’s gravitational field, Scientific American, 22 December 2011.

6) The American Physical Society has started a new group: a Topical Group on the Physics of Climate! If you’re a member of the APS, and care about climate issues, you should join this.

7) Finally, here’s a cool picture taken in the Gulf of Alaska by Kent Smith:

He believes this was caused by fresher water meeting more salty water, but it doesn’t sounds like he’s sure. Can anyone figure out what’s going on? The foam where the waters meet is especially intriguing.


Melting Permafrost (Part 3)

19 December, 2011

Melting permafrost is in the news! Check out this great slide show and article:

• Josh Hane, Hunting for clues to global warming, New York Times, 16 December 2011.

• Justin Gillis, As permafrost thaws, scientists study the risks, New York Times, 16 December 2011.

They track Katey M. Walter Anthony, an assistant professor at the Water and Environmental Research Center at the University of Alaska Fairbanks, as she studies methane bubbling up from lakes—as shown above.

These lakes form in an interesting way. Permafrost is permanently frozen soil lying beneath a layer 0.6 to 4 meters thick of soil that thaws in the summer and refreezes in the winter: the active layer. The permafrost itself can be much thicker—up to 1500 meters in parts of Siberia!

As far as I can tell, talik is permanently unfrozen soil on top of, amid or beneath the permafrost.

Permafrost is rock-hard and solid. Liquid water does not pass through it, so permafrost environments tend to be poorly drained and boggy. But when permafrost starts to melt, it becomes soft. Soil sinks down into marshy hollows separated by small hills, forming a kind of terrain called thermokarst.

Trees in this terrain can lean crazily as their roots sink, creating drunken forests.

On flat ground, melted water can pool into a thermokarst lake. On slopes, water pours downhill and the land can rip open in a thermokarst failure. Here are Breck Bowden and Michael Gooseff exploring a thermokarst failure in Alaska:

For more on this, see:

• Emily Stone, When the ground collapses like a soufflé: Studying the effect of thermokarst on the Arctic, Field Notes: the Polar Field Services Newsletter

All these are natural processes that are widespread at the end of each glacial period. Here’s a surprisingly delightful book which discusses this in detail:

• Evelyn C. Pielou, After the Ice Age: the Return of Life to Glaciated North America, U. Chicago Press, Chicago, 1991.

So, please don’t misunderstand: I’m not trying to say that thermokarst lakes, drunken forests and the like are signs of disaster. However, as the Earth warms, new regions of permafrost are melting, and we’ll see these phenomena in new regions. We need to understand how they work, and the positive and negative feedbacks. For example, thermokarst lakes are darker than their surroundings, so they absorb more sunlight and warm the area.

Most importantly, as permafrost thaws, it releases trapped carbon in the form of carbon dioxide and methane, which are both greenhouse gases. Since there are roughly 1.7 trillion tons of carbon in northern soils, with about 90% locked in permafrost, that’s a big deal.

At least once so far, the tundra has even caught fire:

One day in 2007, on the plain in northern Alaska, a lightning strike set the tundra on fire.

Historically, tundra, a landscape of lichens, mosses and delicate plants, was too damp to burn. But the climate in the area is warming and drying, and fires in both the tundra and forest regions of Alaska are increasing.

The Anaktuvuk River fire burned about 400 square miles of tundra, and work on lake sediments showed that no fire of that scale had occurred in the region in at least 5,000 years.

Scientists have calculated that the fire and its aftermath sent a huge pulse of carbon into the air — as much as would be emitted in two years by a city the size of Miami. Scientists say the fire thawed the upper layer of permafrost and set off what they fear will be permanent shifts in the landscape.

Up to now, the Arctic has been absorbing carbon, on balance, and was once expected to keep doing so throughout this century. But recent analyses suggest that the permafrost thaw could turn the Arctic into a net source of carbon, possibly within a decade or two, and those studies did not account for fire.

“I maintain that the fastest way you’re going to lose permafrost and release permafrost carbon to the atmosphere is increasing fire frequency,” said Michelle C. Mack, a University of Florida scientist who is studying the Anaktuvuk fire. “It’s a rapid and catastrophic way you could completely change everything.”

By the way, if you click on these scientists’ portraits, you’ll see where they work. If you’re a student looking for an interesting career, consider these options! For example, Michelle C. Mack—shown above—runs a lab, and you can see her postdocs and grad students, and what they do.

For previous posts in this series, see:

Melting Permafrost (Part 1).

Melting Permafrost (Part 2).


Melting Permafrost (Part 2)

14 December, 2011

This summer a Russian research ship found hundreds of plumes of methane, “of a fantastic scale”, bubbling up from the sea floor off the East Siberian coast:

• Steve Connor, Shock as retreat of Arctic sea ice releases deadly greenhouse gas, 13 December 2011.

Here are the quotes with actual new information:

In late summer, the Russian research vessel Academician Lavrentiev conducted an extensive survey of about 10,000 square miles of sea off the East Siberian coast. Scientists deployed four highly sensitive instruments, both seismic and acoustic, to monitor the “fountains” or plumes of methane bubbles rising to the sea surface from beneath the seabed.

“In a very small area, less than 10,000 square miles, we have counted more than 100 fountains, or torch-like structures, bubbling through the water column and injected directly into the atmosphere from the seabed,” Dr Semiletov said. “We carried out checks at about 115 stationary points and discovered methane fields of a fantastic scale – I think on a scale not seen before. Some plumes were a kilometre or more wide and the emissions went directly into the atmosphere – the concentration was a hundred times higher than normal.”

and

“This is the first time that we’ve found continuous, powerful and impressive seeping structures, more than 1,000 metres in diameter. It’s amazing,” Dr Semiletov said. “I was most impressed by the sheer scale and high density of the plumes. Over a relatively small area we found more than 100, but over a wider area there should be thousands of them.”

Scientists estimate that there are hundreds of millions of tonnes of methane gas locked away beneath the Arctic permafrost, which extends from the mainland into the seabed of the relatively shallow sea of the East Siberian Arctic Shelf. One of the greatest fears is that with the disappearance of the Arctic sea-ice in summer, and rapidly rising temperatures across the entire region, which are already melting the Siberian permafrost, the trapped methane could be suddenly released into the atmosphere leading to rapid and severe climate change.

Dr Semiletov’s team published a study in 2010 estimating that the methane emissions from this region were about eight million tonnes a year, but the latest expedition suggests this is a significant underestimate of the phenomenon.

I’d like to know more about Igor Semiletov’s work and what he’s just found. He was mentioned in this earlier very good article:

• Amanda Leigh Mascarelli, A sleeping giant?, Nature Reports Climate Change, 5 March 2009.

Namely:

The Siberian Shelf alone harbours an estimated 1,400 billion tonnes of methane in gas hydrates, about twice as much carbon as is contained in all the trees, grasses and flowers on the planet. If just one per cent of this escaped into the atmosphere within a few decades, it would be enough to cause abrupt climate change, says Shakhova. “When hydrates are destabilized, gas is released under very high pressure,” she says. “So emissions could be massive and non-gradual.” Shakhova and her colleague Igor Semiletov of the University of Alaska, Fairbanks, believe the plumes they’ve observed confirm previous reports that the permafrost cap is beginning to destabilize, allowing methane to escape from the frozen hydrates below. “Subsea permafrost is like a rock,” explains Semiletov. “It works like a lid to prevent escape of any gas. We believe that the subsea permafrost is failing to seal the ancient carbon pool.”

But Carolyn Ruppel, a geophysicist with the US Geological Survey in Woods Hole, Massachusetts, isn’t yet ready to attribute the methane plumes to a breakdown in methane hydrates in the subsea permafrost. “We have proof from studies that have been carried out in the past few years that there’s a lot of methane in certain shallow marine environments offshore in the Arctic,” says Ruppel. “But can we prove that the methane comes from methane hydrates? That is a critical question.”

Why is it critical? Because people are worried about global warming melting permafrost and gas hydrates on the ocean floor. Suppose these release large amounts of methane, a greenhouse gas vastly more potent than carbon dioxide. This will then makes the Earth even warmer, and so on: we have a feedback loop. In a real nightmare scenario, we could imagine that this feedback actually leads to a ‘tipping point’, where the climate flips over to a much warmer state. And in the worst nightmare of all, we can imagine something like Paleocene-Eocene Thermal Maximum, a spike of heat that lasted about 20,000 years, causing significant extinctions.

Are any of these nightmares really possible? I wrote about this question before, assembling what facts I could easily find:

Melting permafrost (Part 1).

How much new light does Semiletov’s work shed on this question?

Luckily, a team of scientists is gearing up to answer it:

Permafrost Carbon Network (RCN).

Here’s a paper by this team:

• Edward A. G. Schuur, Benjamin Abbott and the Permafrost Carbon Network, High risk of permafrost thaw, Nature 480 (1 December 2011), 32-33.

To get the ball rolling, they surveyed themselves. That may seem like a lazy way to write a paper, but I don’t mind it as a quick way to get a sense of the conventional wisdom… and they probably wanted to do it just to find out what they all thought! Here are the results—emphasis mine:

Our survey asks what percentage of the surface permafrost is likely to thaw, how much carbon will be released, and how much of that carbon will be CH4, for three time periods and under four warming scenarios that will be part of the Intergovernmental Panel on Climate Change Fifth Assessment Report. The lowest warming scenario projects 1.5 °C Arctic warming over the 1985–2004 average by the year 2040, ramping up to 2 °C by 2100; the highest warming scenario considers 2.5 °C by 2040, and 7.5 °C by 2100. In all cases, we posited that the temperature would remain steady from 2100 to 2300 so that we could assess opinions about the time lag in the response of permafrost carbon to temperature change.

The survey was filled out this year by 41 international scientists, listed as authors here, who publish on various aspects of permafrost. The results are striking. Collectively, we hypothesize that the high warming scenario will degrade 9–15% of the top 3 metres of permafrost by 2040, increasing to 47–61% by 2100 and 67–79% by 2300 (these ranges are the 95% confidence intervals around the group’s mean estimate). The estimated carbon release from this degradation is 30 billion to 63 billion tonnes of carbon by 2040, reaching 232 billion to 380 billion tonnes by 2100 and 549 billion to 865 billion tonnes by 2300. These values, expressed in CO2 equivalents, combine the effect of carbon released as both CO2 and as CH4.

Our estimate for the amount of carbon released by 2100 is 1.7–5.2 times larger than those reported in several recent modelling studies, all of which used a similar warming scenario. This reflects, in part, our perceived importance of the abrupt thaw processes, as well as our heightened awareness of deep carbon pools. Active research is aimed at incorporating these main issues, along with others, into models.

Are our projected rapid changes to the permafrost soil carbon pool plausible? The survey predicts a 7–11% drop in the size of the permafrost carbon pool by 2100 under the high-warming scenario. That scale of carbon loss has happened before: a 7–14% decrease has been measured in soil carbon inventories across thousands of sites in the temperate-zone United Kingdom as a result of climate change. Also, data scaled up from a single permafrost field site point to a potential 5% loss over a century as a result of widespread permafrost thaw. These field results generally agree with the collective carbon-loss projection made by this survey, so it should indeed be plausible.

Across all the warming scenarios, we project that most of the released carbon will be in the form of CO2 with only about 2.7% in the form of CH4. However, because CH4 has a higher global-warming potential, almost half the effect of future permafrost-zone carbon emissions on climate forcing is likely to be from CH4. That is roughly consistent with the tens of billions of tonnes of CH4 thought to have come from oxygen-limited environments in northern ecosystems after the end of the last glacial period.

All this points towards significant carbon releases from permafrost-zone soils over policy-relevant timescales. It also highlights important lags whereby permafrost degradation and carbon emissions are expected to continue for decades or centuries after global temperatures stabilize at new, higher levels. Of course, temperatures might not reach such high levels. Our group’s estimate for carbon release under the lowest warming scenario, although still quite sizeable, is about one-third of that predicted under the strongest warming scenario.

I found this sentence is a bit confusing:

These values, expressed in CO2 equivalents, combine the effect of carbon released as both CO2 and as CH4.

But I guess that combined with a guess like “30 billion to 63 billion tonnes of carbon by 2040”, it means that they’re expecting a release of carbon dioxide and methane that’s equal, in its global warming potential, to what you’d get from burning 30 to 63 billion tonnes of carbon, turning it all into carbon dioxide, and releasing it into the atmosphere.

For comparison, in 2010 humanity burnt 8.3 billion tonnes of carbon. So, at least up to 2040, I guess they’re expecting the effect of melting permafrost to be roughly 1/8 to 1/4 of the direct effect of burning carbon.


New Climate Sensitivity Estimate

26 November, 2011

Devoted readers will remember my interview of Nathan Urban in week302week305 of This Week’s Finds. We talked about how he estimated the probability that global warming will cause the biggest current in the North Atlantic to collapse.

Now he and a bunch of coauthors have a new paper using paleoclimate data and some of the same mathematical techniques to estimate of how much the Earth will warm if we double the amount of CO2 in the atmosphere:

• A. Schmittner, N.M. Urban, J.D. Shakun, N.D. Mahowald, P.U. Clark, P.J. Bartlein, A.C. Mix and A. Rosell-Melé, Climate sensitivity estimated from temperature reconstructions of the last glacial maximum, Science, 2011.

The average global temperature rise when we double the amount of CO2 in the atmosphere is called the climate sensitivity.

The paper claims that the “likely” (66% probability) climate sensitivity is between 1.7 and 2.6 °C. They say it’s “very likely” (90% probability) that the climate sensitivity is between 1.4 and 2.8 °C. Their best estimate is around 2.2 or 2.3 °C.

If true, this is good news, because other studies suggest 3 °C as the best estimate, 2 to 4.5 °C as the “very likely” range, and a chance of even higher figures.

On the other hand, Nathan and his collaborators predict a significantly higher climate sensitivity on land. Here’s a graph of the probability density for various possible values


As you can see, their analysis easily allows for warming of 3 to 4 °C on land if we double the amount of CO2.

The best summary of the paper is this new interview of Nathan Urban by the blogger ‘thingsbreak’:

• Thingsbreak, Interview with Nathan Urban on his new paper “Climate sensitivity estimated from temperature reconstructions of the last glacial maximum”, Planet 3.0, 24 November 2010.

So, check that out if you want more details but aren’t quite ready for the actual paper! There’s a lot of important stuff I haven’t said here.


Eskimo Words for Snow

15 November, 2011

As I was reading about global warming and its effect on the Arctic and the people who live there, I couldn’t help bumping into some words in West Greenlandic. This is the main Inuit language spoken in Greenland. The people who actually speak it call it ‘Kalaallisut’. In June 2009 it was made the official language of the Greenlandic autonomous territory.

For example, I read about Sermersuaq. This is the Northern Hemisphere’s widest ‘tidewater glacier’: one that begins on land but terminates in water. It stretches 90 kilometers across!

This glacier is also called the Humboldt Glacier, but with all due respect to Humboldt, I’d rather call this magnificent, intensely forbidding realm by the name used by the people who can manage to live there! And so, I’d rather use the Kalaallisut word: Sermersuaq.

To see why Sermersuaq is a big deal, check out these photos taken by Nick Cobbing of Greenpeace:


 

Here’s a photo NASA took of Sermersuaq in 2000:


And here’s a photo they took in 2008, with the 2000 terminus again marked:


It lost 175 square kilometers of ice during that time.

Anyway, after seeing words like Semersuaq, Kangerdlugssuaq, and so on, I started wondering about a famous urban legend.

You’ve probably heard that the Eskimos have lots of words for snow. And maybe you’ve heard other people say “no, that’s not true”.

But the whole dispute starts seeming rather silly when you find out that the Eskimo — or more precisely, the speakers of Kalaallisut — have a word for “once again they tried to build a giant radio station, but it was apparently only on the drawing board.” It’s

nalunaarasuartaatilioqateeraliorfinnialikker-
saatiginialikkersaatilillaranatagoorunarsuarooq
.

When I learned this, I decided I wanted to learn a bit more about Kalaallisut!

For starters, Kalaallisut is just one of several closely related Inuit languages spoken in Greenland and Canada. Here is a map showing these languages:


In my attempts to learn more, I bumped into this piece:

• Mick Mallon, Inuktitut Linguistics for Technocrats, Ittukuluuk Language Programs, Iqaluit, 2000.

It’s about Inuktitut, which is the collective name for a group of Inuit languages spoken in Eastern Canada. You can see them on the map: they’re called Qikiqtaaluk nigiani, Nunavimmiutitut, and Nunatsiavummiutut.

This language is very different from English: it’s polysynthetic, meaning that words can be composed of many pieces.

For example, verbs can be singular, dual, or plural:

takujunga — I see
takujuguk — we two see
takujugut — we several see

But instead of using words like “because”, “if” or “whether”, they use different suffixes:

takugama — because I see
takugunnuk — if we two see
takungmangaatta — whether we several see

The object of the verb can be attached as a suffix:

takujagit — I see you
takujara — I see him
takugakku — because I see him

There are also suffixes that turn verbs to nouns, and suffixes that turn nouns to verbs… and you can even use both in a single complicated word!

There are also ways to indicate whether something is stationary or moving, expected or unexpected:

tavva! — Here it is! (stationary and expected)
avva! — There it is over there! (mobile and unexpected)

There are ways to add spatial information:

tavvani — at this (expected) spot
maangat — from this (unexpected) area
tappaunga — to that (expected) area up there
kanuuna — through that (unexpected) spot down there

And all this is just scratching the surface! Words can easily become huge—and in in a typical written text, only a minority of words are ever repeated.

Whether despite this or because of it, I think we must admit that the Inuit do have a marvelously terse way of describing lots of concepts related to snow and ice. For example, here’s a word list taken from Fortescue’s text on Kalaallisut:

• ‘sea-ice’ — siku (in plural = drift ice)
• ‘pack-ice/large expanses of ice in motion’ — sikursuit, pl. (compacted drift ice/ice field = sikut iqimaniri)
• ‘new ice’ — sikuliaq/sikurlaaq (solid ice cover = nutaaq)
• ‘thin ice’ — sikuaq (in plural = thin ice floes)
• ‘rotten (melting) ice floe’ — sikurluk
• ‘iceberg’ — iluliaq (ilulisap itsirnga = part of iceberg below waterline)
• ‘(piece of) fresh-water ice’ — nilak
• ‘lumps of ice stranded on the beach' — issinnirit, pl.
• ‘glacier’ (also ice forming on objects) — sirmiq (sirmirsuaq = inland ice)
• ‘snow blown in (e.g. doorway)’ — sullarniq
• ‘rime/hoar-frost’ — qaqurnak/kanirniq/kaniq
• ‘frost (on inner surface of e.g. window)’ — iluq
• ‘icy mist’ — pujurak/pujuq kanirnartuq
• ‘hail’ — nataqqurnat
• ‘snow (on ground)’ — aput (aput sisurtuq = avalanche)
• ‘slush (on ground)’ — aput masannartuq
• ‘snow in air/falling’ — qaniit (qanik = snowflake)
• ‘air thick with snow’ — nittaalaq (nittaallat, pl. = snowflakes; nittaalaq nalliuttiqattaartuq = flurries)
• ‘hard grains of snow’ — nittaalaaqqat, pl.
• ‘feathery clumps of falling snow’ — qanipalaat
• ‘new fallen snow’ — apirlaat
• ‘snow crust’ — pukak
• ‘snowy weather’ — qannirsuq/nittaatsuq
• ‘snowstorm’ — pirsuq/pirsirsursuaq
• ‘large ice floe’ — iluitsuq
• ‘snowdrift’ — apusiniq
• ‘ice floe’ — puttaaq
• ‘hummocked ice/pressure ridges in pack ice’ — maniillat/ingunirit, pl.
• ‘drifting lump of ice’ — kassuq (dirty lump of glacier-calved ice = anarluk)
• ‘ice-foot (left adhering to shore)’ — qaannuq
• ‘icicle’ — kusugaq
• ‘opening in sea ice imarnirsaq/ammaniq (open water amidst ice = imaviaq)
• ‘lead (navigable fissure) in sea ice’ — quppaq
• ‘rotten snow/slush on sea’ — qinuq
• ‘wet snow falling’ — imalik
• ‘rotten ice with streams forming’ — aakkarniq
• ‘snow patch (on mountain, etc.)’ — aputitaq
• ‘wet snow on top of ice’ — putsinniq/puvvinniq
• ‘smooth stretch of ice’ — manirak (stretch of snow-free ice = quasaliaq)
• ‘lump of old ice frozen into new ice’ — tuaq
• ‘new ice formed in crack in old ice’ — nutarniq
• ‘bits of floating ice’ — naggutit, pl.
• ‘hard snow’ — mangiggal/mangikaajaaq
• ‘small ice floe (not large enough to stand on)’ — masaaraq
• ‘ice swelling over partially frozen river, etc. from water seeping up to the surface’ — siirsinniq
• ‘piled-up ice-floes frozen together’ — tiggunnirit
• ‘mountain peak sticking up through inland ice’ — nunataq
• ‘calved ice (from end of glacier)’ — uukkarnit
• ‘edge of the (sea) ice’ — sinaaq

Pretty cool, eh?

I made some music and art based on these glacial themes. You can see and hear it here.

If you like this icy ambient music — which is, I readily admit, not exactly dripping with catchy riffs— you’ll love these classic albums by Thomas Köner, which are even more minimal and chilly:

Nunatak.
Teimo.
Permafrost.

You can hear them for free now!


Follow

Get every new post delivered to your Inbox.

Join 3,095 other followers