Azimuth on Google Plus (Part 4)

11 November, 2011

Again, some eye candy to start the show. Stare fixedly at the + sign here until the pink dots completely disappear:

In a semiconductor, a ‘hole’ is the absence of an electron, and it can move around a as if it were a particle. If you have a hole moving to the right, in reality you have electrons moving to the left. Here pink dots moving counterclockwise look like a green dot moving clockwise!

A related puzzle: what happens when you hold a helium balloon on a string while you’re driving in a car with the windows closed… and then you make a sharp right turn? I’ve done it, so I know from experience.

Now for the real stuff:

• Tom Murphy, a physics professor at U.C. San Diego, has a blog worth visiting: Do the Math. He uses physics and math to make informed guesses about the future of energy production. Try out his overview on ‘peak oil’.

• Hundreds of top conservation scientists took a survey, and 99.5% felt that a serious loss of biodiversity is either ‘likely’, ‘very likely’, or ‘virtually certain’. Tropical coral ecosystems were perceived as the most seriously affected. A slim majority think we need to decide on rules for ‘triage’: deciding which species to save and which to give up on.

• Climate change is causing a massive change in tree species across Western USA. “Ecosystems are always changing at the landscape level, but normally the rate of change is too slow for humans to notice,” said Steven Running, a co-author of a study on this at the University of Montana. “Now the rate of change is fast enough we can see it.” The study used remote sensing of large areas over a four-year period.

• The James Dyson Award calls on design and engineering students to create innovative, practical, elegant solutions to the challenges that face us. This year, Edward Linacre won for a self-powering device that extracts water from the air for irrigation purposes. Linacre comes from the drought-afflicted continent of Australia. But his invention borrows some tricks from the Namib beetle, which survives some of the driest deserts in Africa by harvesting the moisture that condenses on its back during the early morning. That’s called biomimicry.


• The New York Times has a great profile of Jeremy Grantham. He heads a successful firm managing $100 billion assets, and now he’s 72. So why is he saying this?

… it’s very important to me to make a lot of money now, much more than when I was 40 or 50.

Not because he has a brand new gold-digger ‘trophy wife’ or spendthrift heirs. No, he puts all the money into the Grantham Foundation for the Protection of the Environment. He’s famous for his quarterly letters on future trends—you can read them free online! And thanks to this, he has some detailed ideas about what’s coming up, and what we should do about it:

Energy “will give us serious and sustained problems” over the next 50 years as we make the transition from hydrocarbons—oil, coal, gas—to solar, wind, nuclear and other sources, but we’ll muddle through to a solution to Peak Oil and related challenges. Peak Everything Else will prove more intractable for humanity. Metals, for instance, “are entropy at work . . . from wonderful metal ores to scattered waste,” and scarcity and higher prices “will slowly increase forever,” but if we scrimp and recycle, we can make do for another century before tight constraint kicks in.

Agriculture is more worrisome. Local water shortages will cause “persistent irritation”—wars, famines. Of the three essential macro nutrient fertilizers, nitrogen is relatively plentiful and recoverable, but we’re running out of potassium and phosphorus, finite mined resources that are “necessary for all life.” Canada has large reserves of potash (the source of potassium), which is good news for Americans, but 50 to 75 percent of the known reserves of phosphate (the source of phosphorus) are located in Morocco and the western Sahara. Assuming a 2 percent annual increase in phosphorus consumption, Grantham believes the rest of the world’s reserves won’t last more than 50 years, so he expects “gamesmanship” from the phosphate-rich.

And he rates soil erosion as the biggest threat of all. The world’s population could reach 10 billion within half a century—perhaps twice as many human beings as the planet’s overtaxed resources can sustainably support, perhaps six times too many.

It’s not that he doesn’t take climate change seriously. However, he seems to have almost given up on the US political establishment doing anything about it. So he’s shifted his focus:

Grantham put his own influence and money behind the climate-change bill passed by the House in 2009. “But even $100 million wouldn’t have gotten it through the Senate,” he said. “The recession more or less ruled it out. It pushed anything having to do with the environment down 10 points, across the board. Unemployment and interest in environmental issues move inversely.”

Having missed a once-in-a-generation legislative opportunity to address climate change, American environmentalists are looking for new strategies. Grantham believes that the best approach may be to recast global warming, which depresses crop yields and worsens soil erosion, as a factor contributing to resource depletion. “People are naturally much more responsive to finite resources than they are to climate change,” he said. “Global warming is bad news. Finite resources is investment advice.” He believes this shift in emphasis plays to Americans’ strength. “Americans are just about the worst at dealing with long-term problems, down there with Uzbekistan,” he said, “but they respond to a market signal better than almost anyone. They roll the dice bigger and quicker than most.”

Let’s wrap up with some more fun stuff: impressive volcanos!

Morgan Abbou explains:

Volcanic lightning photograph by Francisco Negroni. In a scene no human could have witnessed, an apocalyptic agglomeration of lightning bolts illuminates an ash cloud above Chile’s Puyehue volcano in June 2011. The minutes-long exposure shows individual bolts as if they’d all occurred at the same moment and, due to the Earth’s rotation, renders stars (left) as streaks. Lightning to the right of the ash cloud appears to have illuminated nearby clouds.hence the apparent absence of stars on that side of the picture. After an ominous series of earthquakes on the previous day, the volcano erupted that afternoon, convincing authorities to evacuate some 3,500 area residents. Eruptions over the course of the weekend resulted in heavy ashfalls, including in Argentine towns 60 miles (a hundred kilometers) away.

Here’s another shot of the same volcano:

And here’s Mount Etna blowing out a smoke ring in March of 2000. By its shadow, this ring was estimated to be 200 meters in diameter!


Apocalypse, Retreat or Revolution?

3 November, 2011

I’ve been enjoying this book:

• Tim Lenton and Andrew Watson, Revolutions That Made the Earth, Oxford U. Press, Oxford, 2011.

It’s mainly about the history of life on Earth, and how life has affected the climate and atmosphere. For example: when photosynthesis first started pumping a deadly toxic gas into the atmosphere—oxygen—how did life evolve to avoid disaster?

Or: why did most of the Earth freeze, about 650 million years ago, and what did life do then?

Or: what made 96% of all marine species and 70% of vertebrates on land die out, around 250 million years ago?

This is the book’s strength: a detailed but readable version of the greatest story we know, complete with mysteries yet to be solved. But at the end they briefly ponder the future. They consider various scenarios, lumped into three categories: apocalypse, retreat or revolution.

Apocalypse

They begin by reviewing the familiar story: how soaring population and fossil fuel usage is making our climate ever hotter, making our oceans ever more acidic, and sucking phosphorus and other nutrients out of ground and into the sea.

They consider different ways these trends could push the Earth into a new, inhospitable state. They use the term ‘apocalypse’. I think ‘disaster’ is better, but anyway, they write:

Even the normally cheerful and creative Jim Lovelock argues that we are already doomed, and nothing we can do now will stop the Earth system being carried by its own internal dynamics into a different and inhospitable state for us. If so, all we can do is try to adapt. We disagree—in our view the game is not yet up. As far as we can see no one has yet made a convincing scientific case that we are close to a global tipping point for ‘runaway’ climate change.

[…]

Yet even without truly ‘runaway’ change, the combination of unmitigated fossil fuel burning and positive feedbacks from within the Earth system could still produce an apocalyptic climate for humanity. We could raise global temperature by up to 6 °C this century, with more to come next century. On the way there, many parts of the Earth system could pas their own thresholds and undergo profound changes in state. These are what Tim [Lenton] and colleagues have called ‘tipping elements’ in the climate system.

They warrant a book by themselves, so we will just touch on them briefly here. The tipping elements include the great ice sheets covering Greenland and West Antarctica that are already losing mass and adding to sea level rise. In the tropics, there are already changes in atmospheric circulation, and in the pattern of El Niño events. The Amazon rainforest suffered severe drought in 2005 and might in the future face a climate drying-triggered dieback, destroying biodiversity and adding carbon to the atmosphere. Over India, an atmospheric brown cloud of pollution is already disrupting the summer monsoon, threatening food security. The monsoon in West Africa could be seriously disrupted as the neighboring ocean warms up. The boreal forests that cloak the northern high latitudes are threatened by warming, forest fires and insect infestation. The list goes on. The key point is that the Earth’s climate, being a complex feedback system, is unlikely to respond in an entirely smooth and proportional way to significant changes in energy balance caused by human activities.

Here is a map of some tipping elements. Click for more details:

Retreat

They write:

A popular answer to apocalyptic visions of the future is retreat, into a lower energy, lower material consumption, and ultimately lower population world. In this future world the objective is to minimize human effects on the Earth system and allow Gaia to reassert herself, with more room for natural ecosystems and minimal intervention in global cycles. The noble aim is long-term sustainability for for people as well as the planet.

There are some good and useful things we can take from such visions of the future, especially in helping to wean ourselves off fossil fuels, achieve greater energy efficiency, promote recycling and redefine what we mean by quality of life. However, we think that visions of retreat are hopelessly at odds with current trends, and with the very nature of what drives revolutionary changes of the Earth. They lack pragmatism and ultimately they lack ambition. Moreover, a retreat sufficient to forestall the problems outlined above might be just as bad as the problems it sought to avoid.

Revolution

They write:

Our alternative vision of the future is of revolution, into a high energy, high recycling world that can support billions of people as part of a thriving and sustainable biosphere. The key to reaching this vision of the future is to learn from past revolutions: future civilizations must be fuelled from sustainable energy sources, and they must undertake a greatly enhanced recycling of resources.

And here is where the lessons of previous ‘revolutions’ are especially useful. As I said last time, they list four:

1. The origin of life, before 3.8 billion years ago.

2. The Great Oxidation, when photosynthesis put oxygen into the atmosphere between 3.4 and 2.5 billion years ago.

3. The rise of complex life (eukaryotes), roughly 2 billion years ago.

4. The rise of humanity, roughly 0 billion years ago.

Their book argues that all three of the earlier revolutions disrupted the Earth’s climate, pushing it out of stability. It only restabilized after reaching a fundamentally new state. This new stable state could only be born after some new feedback mechanisms had developed.

For example, in every revolution, it has been important to find ways to recycle ‘wastes’ and make them into useful ‘resources’. This was true with oxygen during the Great Oxidation… and it must be true with our waste products now!

In any sort of approximate equilibrium state, there can’t be much ‘waste’: almost everything needs to be recycled. Serious amounts of ‘waste’ can only occur for fairly short periods of time, in the grand scheme of things. For example, we are now burning fossil fuels and creating a lot of waste CO2, but this can’t go on forever: it’s only a transitional phase.

Apocalypse and Revolution?

I should talk about all this in more detail someday. But not today.

For now, I would just like to suggest that ‘apocalypse’ and ‘revolution’ are not really diametrically opposed alternatives. All three previous revolutions destroyed the world as it had been!

For example, when the Great Oxidation occurred, this was an ‘apocalypse’ for anaerobic life forms, who now struggle to survive in specialized niches here and there. It only seems like a triumphant ‘revolution’ in retrospect, to the new life forms that comfortably survive in the new world.

So, I think we’re headed for a combination of apocalypse and revolution: the death of many old things, and the birth of new ones. At best we have a bit of influence in nudging things in a direction we like. I don’t think ‘retreat’ is a real option: nostalgic though I am about many old things, time always pushes us relentlessly into new and strange worlds.


Azimuth on Google Plus (Part 3)

21 October, 2011

I’ve been spending a lot of time Google+ lately, trying to drum up interest in the Azimuth Project. Unsurprisingly, my ‘fun’ posts have attracted more attention than those dealing with serious issues. This confirms my suspicion that computers were invented so we could goof off while it looks like we’re working.

My most popular contribution was this eye-catching image:

63 people shared it with others, despite my warning that it causes brain damage. By the way, there’s another cool illusion at the end of this post, but it’s only visible to people who read the whole thing.

The second most popular tidbit was this movie of Alvin Lucier’s “Music for solo performer”. If you enjoy puzzles, watch it before reading my explanation, and try to figure out what’s going on:

This piece exploits the fact that the brain’s alpha waves—which only start when you’re relaxed with eyes closed—have a frequency of 8-12 hertz. Thus, if amplified enormously, they can be made audible! To perform this piece, you put electrodes on your head and route the signal through an amplifier to loudspeakers coupled to percussion instruments. The performer here wrote:

I welcomed the challenge to reduce my performative activities to a minimum. While working out my interpretation I slowly learned to be aware of my mental activities. I acquired a sensitivity for subtle changes in tension and the ability to switch the state of my brain from beta to alpha and back again. Nevertheless, the outcome is not completely controllable. This makes the live act quite thrilling.

For more, read the text on YouTube.

But I posted about some deadly serious issues, too!

Is the Earth’s surface warming?

In 2010, a Berkeley physicist named Richard Muller decided to launch the Berkeley Earth Surface Temperature (BEST) project to independently check what the Earth’s surface temperature has been doing. The team included physicists, statisticians, and the climatologist Judith Curry, noted for “challenging the IPCC consensus” (her words).

The Charles G. Koch Foundation, which helps bankroll those who support inaction on climate change, gave Muller’s project $150,000. Anthony Watts, one of the big climate skeptic bloggers, wrote:

I’m prepared to accept whatever result they produce…

On the other side of the aisle, some who believe in global warming pre-emptively pooh-poohed the project.

Now BEST has released a bunch of papers on their results. Here’s their summary:

Global warming is real, according to a major study released today. Despite issues raised by climate change skeptics, the Berkeley Earth Surface Temperature study finds reliable evidence of a rise in the average world land temperature of approximately 1 °C since the mid-1950s.

Analyzing temperature data from 15 sources, in some cases going back as 1800, the Berkeley Earth study directly addressed scientific concerns raised by skeptics, including the urban heat island effect, poor station quality, and the risk of selection bias.

On the basis of its analysis, according to Berkeley Earth’s founder and scientific director, the group concluded that earlier studies based on more limited data by teams in the United States and Britain had accurately estimated the extent of land surface warming.

“Our biggest surprise was that the new results agreed so closely with the warming values published previously by other times in the U.S. and U.K.,” Muller said. “This confirms that these studies were done carefully and that potential biases identified by climate change skeptics did not seriously affect their conclusions.”

Anthony Watts’ response is here. As you might have guessed, he’s not “accepting whatever result they produce”.

Is it even possible for someone to back down from a position they’re deeply invested in? It may require a bit of help—an act of kindness. In Brian Merchant’s article Do climate skeptics change their minds?, he writes:

I asked Anthony Watts, the meteorologist who runs what may be the most popular climate-skeptic blog, Watts Up With That, what could lead him to accept climate science. A “starting point for the process,” he said, wouldn’t begin with more facts but instead with a public apology from the high profile scientists who have labeled him and his colleagues “deniers.”

Should we study geoengineering?

Should we study our options for fighting global warming by deliberately manipulating the Earth’s climate? This is called geoengineering—and not surprisingly, it makes lots of people nervous. There are plenty of things to worry about. But can we afford to completely ignore it?

An organization called the Bipartisan Policy Center, set up by four famous US senators, two Democratic and two Republican (Daschle, Mitchell, Baker and Dole) has released a report on this question.

Written by a panel of 18 experts on the natural sciences, social sciences, science policy, foreign policy, national security, and environmental issues, the report concludes that the U.S. government should start a “focused and systematic program of research into climate remediation.” They emphasize that it’s “far too premature to contemplate deployment of any climate remediation technology”, and note that:

Most climate remediation concepts proposed to date involve some combination of risks, financial costs, and/or physical limitations that make them inappropriate to pursue except as complementary or emergency measures—for example, if the climate system reaches a “tipping point” and swift remedial action is required.

But, they point out that even if the U.S. decides not to engage in geoengineering, it “needs to evaluate steps others might take and be able to effectively participate in—and lead—the important international conversations”.

Climate science report

The World Resources Institute has put out a 48-page report called Climate Science 2009-2010, reviewing recent work. For example:

• 2000-2009 was the warmest decade on record since 1880 (NASA).

• The area of Arctic ice that’s been around for many years decreased by 42 percent between 2005 and 2008. This ice has gotten about 0.6 meters thinner during that time. The average thickness of the seasonal ice in midwinter is about 2 meters. (Kwok et al.).

• Ocean acidification—caused by the buildup of carbon dioxide concentrations—is a threat to coral in areas such as the Great Barrier Reef, and is happening much more quickly than anticipated (De’ath et al.). It is now recognized as having implications for the entire ocean food web which is critical to whales, fish, and mollusks (Munday et al., Gooding et al. and Comeau et al.).

• A global average temperature increase of 7° C, which is toward the extreme upper part of the range of current projections, would make large portions of the world uninhabitable to humans (Sherwood et al.). For more, see my article How Hot is Too Hot?

• Recent literature (Yin et al.) suggests that sea level rise will likely not be even around the globe. In other words, sea level rise does not occur just like water being added to a bathtub. As a result, the northeast coast of the United States may be especially affected by changes in sea level due to changes in ocean circulation.

• The latest research (Francis et al. and Petoukhov et al.) also suggests that recent winter weather experienced in temperate Northern Hemisphere could be connected to climate change. As winter sea ice cover in the Arctic Ocean disappears, it can create a pressure and temperature gradient that sucks heat out of Europe. Therefore, recent extreme winter weather is not inconsistent with increases in global average temperature.

Shrinking Arctic lakes

Some Arctic lakes are shrinking. Why? One possibility: warmer temperatures and higher winds could cause more evaporation. Another: melting permafrost could let lake water soak into thawed soil. The scientist involved, Mark Carroll at the University of Maryland in College Park, “is not aware of any evidence that the permafrost in the far north is melting yet”. Hmm—compare my article Melting Permafrost.

Experiments in deforestation

Starting in December, a Malaysian state-owned company will start chopping down 75,000 hectares of rainforest on Borneo, to create yet another palm oil plantation. Unfortunately, that doesn’t count as newsworthy! What’s news is that a team led by Rob Ewers at Imperial College London will do an experiment based on this. Working to Ewers’s design, the loggers will leave patches of rainforest of different sizes, and at different distances from other patches of rainforest, to determine the effects of different levels of deforestation.

Permian-Triassic extinction

About 251 million years ago, our Earth suffered its biggest mass extinction event ever: the Permian-Triassic extinction. As many as 96% of all marine species and 70% of terrestrial vertebrates went extinct! Here’s what the sea bottom looked like before:

and after:

It took 50 million years for the Earth to completely recover its biodiversity!

Naturally there’s a lot of interest in figuring out what happened. The CO2 concentration soared to 2000 parts per million, and the temperature rose about 8 °C, but other things may have been at work too. I won’t attempt to discuss all this here!—just one little bit of news. Gregory Brennecka and others from Arizona State University and University of Cincinnati found that the ocean was low in oxygen for at most tens of thousands of years before the Permian-Triassic extinction. That’s shorter than previous estimates.

They saw a big shift in the ratio of 238U to 235U in carbonate rocks immediately prior to the mass extinction, which they claim signals an increase in oceanic anoxia—this is apparently a new technique. The team also found higher Th/U ratios in the same interval, which indicate a decrease in the uranium content of seawater. They also consider lower concentrations of uranium in seawater to be a sign of ocean anoxia.

Planet 3.0

Azimuth has joined Planet 3.0 an organization of climate-related blogs that also features blog articles of its own. It has an editorial team consisting of Michael Tobis and Dan Moutal, and a scientific advisory team consisting Steve Easterbrook, Arthur Smith, Michael Tobis, and Bart Verheggen.

I don’t know much about it yet, but it could be good. I’ve been wanting more people to join me blogging here on Azimuth, to build up more of a community and a higher level of energy, but maybe this is a better solution: keep Azimuth as is, but also put climate-related blog articles on Planet 3.0. We’ll see.

The part you’ve been waiting for

As with the picture at the top of this article, if you focus on any small patch, strange things seem to start happening everywhere else. Your eyes gets curious, and it’s hard to avoid looking. As your eyes flicker back and forth, the horizontal lines seem to twitch and bend.

At least, that’s what I see!


A Bet Concerning Neutrinos

27 September, 2011

Over on Google+ I wrote:

I’m willing to take bets that this faster-than-light neutrino business will turn out to be wrong. We can negotiate the detailed terms, the odds, and the stakes.

But beware: I’m still enjoying the case of scotch I won from David Ring. I bet there’d be no “strong evidence for supersymmetry” within the first year of operation of the Large Hadron Collider.

It took a couple of days, but I finally got someone willing to take me up on this. And—surprise!—it was none other than Frederick De Roo, one of the key contributors to the Azimuth Project.

But he’s playing for higher stakes than I’d expected:

Hi John,

actually I’m willing to take a bet.

I propose to bet (even though I don’t believe it) that

neutrinos can go faster than light

The loser of the bet will promise to the winner not to fly for one whole year! (for a year chosen within a specified number of years after the bet has expired)

How about that? The earth wins regardless who’s right ;-)

I asked him if we could discuss the details here, and he said okay.

It’s a tricky business. While I’ve got the odds on my side, I’ve also got more to lose!

Frederik lives in Europe, where there are lots of trains. His idea of a fun vacation is a month-long bike trip. What’s he got to lose?

I could easily survive a year of not flying to conferences. It would hurt a bit. Still, I’d say yes in a minute if it were just up to me. But Lisa and I have permanent positions at the University of California in Riverside, and we’re trying to work out a deal where we work in Singapore every summer. So, I can’t really agree to this bet unless I get her okay!

How do I convince a non-physicist—and not just any non-physicist, but my wife—that it’s really, really safe to bet a summer of being together on the possibility that neutrinos go faster than light?

We spent seven years on opposite sides of the country before she got a job at UC Riverside. We promised we’d never do something like that again. And now I’m saying “oh, don’t worry, dear: special relativity is very well tested.” If you haven’t been in this situation, you don’t know how unconvincing that sounds.

Should I look into cruises from Southern California to Singapore? How long do those take, anyway? It would be a bummer to get there only have to head straight back.

What would you say, Frederik, if I changed the the terms of the bet to something like this? If I lose the bet, for each plane trip I take during the specified year, I’ll donate $10,000 to your favorite environmental organization. Carbon offsets, or whatever you like. That way if I lose, I suffer, but not my marriage.


Climate Reality Project

14 September, 2011

The Climate Reality Project is planning a presentation called “24 Hours of Reality” beginning at 7 pm Central Time on September 14th, arguing for the connection between more extreme weather and climate change. “There will be a full-on assault on climate skeptics, exploring where they get their funding from.”

The Washington Post has an interview with Al Gore about this project:

• Brad Plumer, Al Gore: ‘The message still has to be about the reality we’re facing’ , Washington Post, 12 September 2011.

I’ll quote a bit:

Brad Plumer: “An Inconvenient Truth” was basically a primer on global warming—the causes, the problems it creates, the ways we can avert it. So what more is there to add? How will this new presentation be different?

Al Gore: It’s very different—a few of the images are the same, but 95 percent of the slides are completely new. The science linking the increased frequency and severity of extreme weather to the climate crisis has matured tremendously in the last couple of years. Think about the last year, we’ve had floods in Pakistan displacing 20 million people and further destabilizing a nuclear-armed country. We’ve had drought and wildfires in Russia. In Australia you’ve got floods the size of France and Germany combined. Then there’s drought in Texas—out of 254 counties in Texas, 252 are on fire. I’m talking to you from Nashville, where the city lost the equivalent of an entire year’s budget from recent floods—the area has never been flooded like this before, so no one had flood insurance.

That’s the reality we’ve got to focus on. This presentation is a defense of the science and the scientists, against the timeworn claims by deniers.

BP: Now, whenever a natural disaster happens—say, a flood or a wildfire—you typically see scientists quoted in the press saying, “Well, it’s hard to attribute any single event to global warming, although this is the sort of event we should see more of as the planet warms.” As I understand it, this sort of extra-careful hedge is becoming outdated. Scientists actually are making tighter connections between current disasters and climate change, correct?

AG: Yes, that shift in the way scientists describe the linkage is one of the elements of this new slideshow. It’s a subtle but extremely important shift. They used to say that the climate crisis changes the odds of extreme weather events—this was the old metaphor of “loading the dice.” Now, they say there’s not only a greater likelihood of rolling 12s, but we’re actually loading 13s and could soon be rolling 15s and 16s. As scientists like James Hansen [of NASA’s Goddard Institute for Space Studies] and Kevin Trenberth [of the National Center for Atmospheric Research] point out, the changes brought about by man-made global-warming pollution have reached the stage that every event is now being affected by it in some way.

In the last 30 years, for instance, we’ve seen water vapor above the oceans increase by 4 percent, and many storms reach as far as 2,000 miles out to collect water vapor. So when you have a 4 percent increase over such a large area, the storms are now fueled with more water vapor than was the case 30 years ago. That means we’re getting larger downpours. And in drought-prone areas, we’re seeing increasing intervals between downpours, which is one of several reasons why we’re seeing extreme droughts.

BP: Now, you’re talking about presenting the stark facts as a way of persuading people that climate change is a problem. Yet when you look at polls on climate belief, one thing that stands out is that the people most dismissive of global warming tend to be the most confident that they have all the information they need. Doesn’t that suggest there’s a point at which more information doesn’t actually persuade anyone?

AG: Well, that logic hasn’t led deniers to stop pressing the inaccurate disinformation about climate science. And the fact is that quite a few of the large carbon polluters and their allies in the ideological right wing have been spending hundreds of millions of dollars per year to mislead people. Have you read Naomi Oreske’s book Merchants of Doubt? The tobacco companies a few decades ago pioneered this organized disinformation technique to create artificial doubt about the science of their product—they hired actors to dress them up as doctors and had them say, “I’m a doctor, there’s nothing wrong with smoking cigarettes; in fact, it’ll make you feel better.” And some of the same people who took money from tobacco companies to lie about tobacco science are now taking money from large carbon polluters to lie about the reality of the climate crisis.

BP: Okay, but taking that opposition is a given, there’s been a lot of discussion about whether something more is needed to fight it than yet another recital of climate science facts.

AG: Right, you hear a lot of people giving advice on how to talk about climate science—how you need to dress differently or stand on your head and deliver the message in rhyme. And I respect all that, and I hope a lot of people will present the message in their own way. But my message is about presenting the reality. I have faith in the United States and our ability to make good decisions based on the facts. And I believe Mother Nature is speaking very loudly and clearly. We’ve had ten disasters in the United States this year alone costing more than $1 billion and which were climate-related. It’s only a matter of time before reality sinks in, and we need both parties involved. And the only way to get the right answer is to understand the question.


US Weather Disasters in 2011

6 September, 2011

The US Federal Emergency Management Agency (FEMA) is running out of money!

So far this year, ten weather disasters have each caused over a billion dollars of damage in the United States. This beats the record set in 2008, when there were nine. FEMA now has less than a billion dollars in its fund:

• Brian Naylor, Costs Of Irene Add Up As FEMA Runs Out Of Cash, Morning Edition, National Public Radio, 30 August 2011.

Let’s review these disasters:

10) Hurricane Irene, August 27-28: A large and powerful Atlantic hurricane that left extensive flood and wind damage along its path through the Caribbean, the east coast of the US and as far north as Atlantic Canada. Early estimates say Irene caused $7 billion in damages in the US.

9) Upper Midwest flooding, summer: An above-average snowpack across the northern Rocky Mountains, combined with rainstorms, caused the Missouri and Souris rivers to swell beyond their banks across the Upper Midwest. An estimated 11,000 people were forced to evacuate Minot, N.D. Numerous levees were breached along the Missouri River, flooding thousands of acres of farmland. Over $2 billion in damages.

8) Mississippi River flooding, spring-summer: Persistent rainfall (nearly triple the normal amount in the Ohio Valley), combined with melting snowpack, caused historical flooding along the Mississippi River and its tributaries. At least two people died. $2 to $4 billion in damages.

7) Southern Plains/Southwest drought, heat wave and wildfires, spring and summer: Drought, heat waves, and wildfires hit Texas, Oklahoma, New Mexico, Arizona, southern Kansas, western Arkansas and Louisiana this year. Wildfire fighting costs for the region are about $1 million per day, with over 2,000 homes and structures lost by mid-August. Over $5 billion in damages so far.

6) Midwest/Southeast tornadoes, May 22-27: Central and southern states saw approximately 180 twisters and 177 deaths within a week. A tornado in Joplin, Mo., caused at least 141 deaths—the deadliest single tornado to strike the United States since modern record keeping began in 1950. Over $7 billion in damages.

5) Southeast/Ohio Valley/Midwest tornadoes, April 25-30: This outbreak of tornadoes over central and southern states led to 327 deaths. Of those fatalities, 240 occurred in Alabama. The deadliest of the estimated 305 tornadoes in the outbreak was an EF-5 that hit northern Alabama, killing 78 people. Several big cities were directly affected by strong tornadoes, including Tuscaloosa, Birmingham and Huntsville in Alabama, and Chattanooga in Tennessee. Over $9 billion in damages.

4) Midwest/Southeast tornadoes, April 14-16: An outbreak over central and southern states produced an estimated 160 tornadoes. Thirty-eight people died, 22 of them in North Carolina. Over $2 billion in damages.

3) Southeast/Midwest tornadoes, April 8-11: An outbreak of tornadoes over central and southern states saw an estimated 59 tornadoes. Over $2.2 billion in damages.

2) Midwest/Southeast tornadoes, April 4-5: An outbreak of tornadoes over central and southern states saw an estimated 46 tornadoes. Nine people died. Over $2.3 billion in damages.

1) Blizzard, Jan 29-Feb 3: A large winter storm hit many central, eastern and northeastern states. 36 people died. Over $2 billion in damages.

I got most of this information from this article, which was written before Irene pushed 2011 into the lead:

• Brett Israel, 2011 ties for most billion-dollar weather disasters, Our Amazing Planet, 18 August 2011.

We can expect more weather disasters as global warming proceeds. The National Academy of Sciences says:

• Increases of precipitation at high latitudes and drying of the already semi-arid regions are projected with increasing global warming, with seasonal changes in several regions expected to be about 5-10% per degree of warming. However, patterns of precipitation show much larger variability across models than patterns of temperature.

• Large increases in the area burned by wildfire are expected in parts of Australia, western Canada, Eurasia and the United States.

• Extreme precipitation events—that is, days with the top 15% of rainfall—are expected to increase by 3-10% per degree of warming.

• In many regions the amount of flow in streams and rivers is expected to change by 5-15% per degree of warming, with decreases in some areas and increases in others.

• The total number of tropical cyclones should decrease slightly or remain unchanged. Their wind speed is expected to increase by 1-4% per degree of warming.

Some people worry about sea level rise, but I think the bite from weather disasters and ensuing crop failures will hurt much more, much sooner.

Since it doesn’t look like politicians will do enough to cut carbon emissions, insurance companies are moving to act on their own—not to prevent weather disasters, but to minimize their effect:

Swiss Re’s global headquarters face Lake Zurich, overlooking a small yacht harbor. Bresch and a colleague, Andreas Schraft, sometimes walk the 20 minutes to the train station together after work, past more yachts, an arboretum, and a series of bridges. In September 2005, probably on one of these walks, the two began to discuss what they now call “Faktor K,” for “Kultur”: the culture factor. Losses from Hurricanes Katrina, Rita, and Wilma had been much higher than expected in ways the existing windstorm models hadn’t predicted, and it wasn’t because they were far off on wind velocities.

The problem had to do more with how people on the Gulf Coast were assessing windstorm risk as a group. Mangrove swamps on the Louisiana coast had been cut down and used as fertilizer, stripping away a barrier that could have sapped the storm of some of its energy. Levees were underbuilt, not overbuilt. Reinsurers and modeling firms had focused on technology and the natural sciences; they were missing lessons from economists and social scientists. “We can’t just add another bell and whistle to the model,” says Bresch, “It’s about how societies tolerate risk.”

“We approach a lot of things as much as we can from the point of statistics and hard data,” says David Smith, head of model development for Eqecat, a natural hazards modeling firm. “It’s not the perfect expression.” The discrepancy between the loss his firm modeled for Katrina and the ultimate claims-based loss number for his clients was the largest Smith had seen. Like others in the industry, Eqecat had failed to anticipate the extent of levee failure. Construction quality in the Gulf states before Katrina was poorer than anticipated, and Eqecat was surprised by a surge in demand after the storm that inflated prices for labor and materials to rebuild. Smith recognizes that these are questions for sociologists and economists as well as engineers, and he consults with the softer sciences to get his models right. But his own market has its demands, too. “The more we can base the model on empirical data,” he says, “the more defendable it is.”

After their walk around the lake in 2005, Swiss Re’s Bresch and Schraft began meeting with social scientists and laying out two goals. First, they wanted to better understand the culture factor and, ultimately, the risks they were underwriting. Second, they wanted to use that understanding to help the insured prevent losses before they had to be paid for.

The business of insurers and reinsurers rests on balancing a risk between two extremes. If the risk isn’t probable enough, or the potential loss isn’t expensive enough, there’s no reason for anyone to buy insurance for it. If it’s too probable and the loss too expensive, the premium will be unaffordable. This is bad for both the insured and the insurer. So the insurance industry has an interest in what it calls “loss mitigation.” It encourages potential customers to keep their property from being destroyed in the first place. If Swiss Re is trying to affect the behavior of the property owners it underwrites, it’s sending a signal: Some behavior is so risky that it’s hard to price. Keep it up, and you’ll have no insurance and we’ll have no business. That’s bad for everyone.

To that end, Swiss Re has started speaking about climate risk, not climate change. That the climate is changing has been established in the eyes of the industry. “For a long time,” says Bresch, “people thought we only needed to do detailed modeling to truly understand in a specific region how the climate will change. … You can do that forever.” In many places, he says, climate change is only part of the story. The other part is economic development. In other words, we’re building in the wrong places in the wrong way, so wrong that what we build often isn’t even insurable. In an interview published by Swiss Re, Wolf Dombrowsky, of the Disaster Research Center at Kiel University in Germany, points out that it’s wrong to say that a natural disaster destroyed something; the destruction was not nature’s fault but our own.

In 1888 the city of Sundsvall in Sweden, built of wood, burned to the ground. A group of reinsurers, Swiss Re among them, let Sweden’s insurers know there was going to be a limit in the future on losses from wooden houses, and it was going to be low. Sweden began building with stone. Reinsurance is a product, but also a carrot in the negotiation between culture and reality; it lets societies know what habits are unsustainable.

More recently, the company has been working with McKinsey & Co., the European Commission, and several environmental groups to develop a methodology it calls the “economics of climate adaptation,” a way to encourage city planners to build in a way that will be insurable in the future. A study of the U.K. port of Hull looks at potential losses by 2030 under several different climate scenarios. Even under the most extreme, losses were expected to grow by $17 million due to climate change and by $23 million due to economic growth. How Hull builds in the next two decades matters more to it than the levels of carbon dioxide in the air. A similar study for Entergy (ETR), a New Orleans-based utility, concluded that adaptations on the Gulf Coast—such as tightening building codes, restoring wetlands and barrier islands, building levees around chemical plants, and requiring that new homes in high-risk areas be elevated—could almost completely offset the predicted cost of 100-year storms happening every 40 years.

I actually disagree somewhat with the statement “it’s wrong to say that a natural disaster destroyed something; the destruction was not nature’s fault but our own.” There’s some truth to this, but also some untruth. The question of “fault” or “blame” is a slippery one here, and there’s probably no way to completely settle it.

Is it the “fault” of people in Vermont that they weren’t fully prepared for a hurricane? After all, it’s rare—or at least it used to be rare—for hurricanes to make it that far north. The governor of Vermont, Peter Shumlin, recently said:

I find it extraordinary that so many political leaders won’t actually talk about the relationship between climate change, fossil fuels, our continuing irrational exuberance about burning fossil fuels, in light of these storm patterns that we’ve been experiencing.

We had storms this spring that flooded our downtowns and put us through many of the same exercises that we’re going through right now. We didn’t used to get weather patterns like this in Vermont. We didn’t get tropical storms. We didn’t get flash flooding.

We in the colder states are going to see the results of climate change first. Myself, Premier Charest up in Quebec, Governor Cuomo over in New York, we understand that the flooding and the extraordinary weather patterns that we’re seeing are a result of our burnings of fossil fuel. We’ve got to get off fossil fuels as quickly as we know how, to make this planet livable for our children and our grandchildren.

On the other hand, you could say that it is the fault of Vermonters, or at least humanity as a whole, for causing global warming in the first place.

But ultimately, pinning blame on someone or something is less important than figuring out how to solve the problems we face.


Melting Permafrost (Part 1)

1 September, 2011

Some people worry about rising sea levels due to global warming. But that will happen slowly. I worry about tipping points.

The word “tipping point” should remind you of pushing on a glass of water. If you push it a little, and then stop, it’ll right itself: no harm done. But if you push it past a certain point, it starts tipping over. Then it’s hard to stop.

So, we need to study possible tipping points in the Earth’s climate system. Here’s a list of them:

Tipping point, Azimuth Library.

Today I want to talk about one: melting permafrost. When melting permafrost in the Arctic starts releasing lots of carbon dioxide and methane—a vastly more potent greenhouse gas—the Earth will get even hotter. That, in turn, will melt even more permafrost. In theory, this feedback loop could tip the Earth over to a much hotter state. But how much should we worry about this?

Climate activist Joe Romm takes it very seriously:

• Joe Romm, NSIDC bombshell: Thawing permafrost feedback will turn Arctic from carbon sink to source in the 2020s, releasing 100 billion tons of carbon by 2100, Climate Progress, 17 February 2011.

If you click on just one link of mine today, let it be this! He writes in a clear, snappy way. But let me take you through some of the details in my own more pedestrian fashion.

For starters, the Arctic is melting. Here’s a graph of Arctic sea ice volume created by the Pan-Arctic Ice Ocean Modeling and Assimilation System—click to enlarge:

The blue line is the linear best fit, but you can see it’s been melting faster lately. Is this a glitch or a new trend? Time will tell.

2011 is considerably worse than 2007, the previous record-holder. Here you can clearly see the estimated total volume in thousands of cubic kilometers, and how it changes with the seasons:


As the Arctic melts, many things are changing. The fabled Northwest Passage is becoming a practical waterway, so battles are starting to heat up over who controls it. The U.S. and other nations see it as an international waterway. But Canada says they own it, and have the right to regulate and protect it:

• Jackie Northam, Arctic warming unlocking a fabled waterway, Morning Edition, National Public Radio, 15 August 2011.

But the 800-pound gorilla in the room is the melting permafrost. A lot of the Arctic is covered by permafrost, and it stores a lot of carbon, both as peat and as methane. After all, peat is rotten plant material, and rotting plants make methane. Recent work estimates that between 1400 and 1700 gigatonnes of carbon is stored in permafrost soils worldwide:

• C. Tarnocai, J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov, Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochemical Cycles 23 (2009), GB2023.

That’s more carbon than currently resides in all living things, and twice as much carbon as held by the atmosphere!

How much of this carbon will be released as the Arctic melts—and how fast? There’s a new paper about that:

• Kevin Schaefer, Tingjun Zhang, Lori Bruhwiler, Andrew Barrett, Amount and timing of permafrost carbon release in response to climate warming, Tellus B 63 (2011), 165–180.

It’s not free, but you can read Joe Romm’s summary. Here’s their estimate on how carbon will be released by melting permafrost:

So, they’re guessing that melting permafrost will release a gigatonne of carbon per year by the mid-2030s. Moreover, they say:

We predict that the PCF [permafrost carbon feedback] will change the Arctic from a carbon sink to a source after the mid-2020s and is strong enough to cancel 42-88% of the total global land sink. The thaw and decay of permafrost carbon is irreversible and accounting for the PCF will require larger reductions in fossil fuel emissions to reach a target atmospheric CO2 concentration.

One of the authors explains more details here:

“The amount of carbon released [by 2200] is equivalent to half the amount of carbon that has been released into the atmosphere since the dawn of the industrial age,” said NSIDC scientist Kevin Schaefer. “That is a lot of carbon.”

The carbon from permanently frozen ground known as permafrost “will make its impact, not only on the climate, but also on international strategies to reduce climate change Schaefer said. “If we want to hit a target carbon concentration, then we have to reduce fossil fuel emissions that much lower than previously calculated to account for this additional carbon from the permafrost,” Schaefer said. “Otherwise we will end up with a warmer Earth than we want.”

The carbon comes from plant material frozen in soil during the ice age of the Pleistocene: the icy soil trapped and preserved the biomass for thousands of years. Schaefer equates the mechanism to storing broccoli in the home freezer: “As long as it stays frozen, it stays stable for many years,” he said. “But you take it out of the freezer and it will thaw out and decay.”

Now, permafrost is thawing in a warming climate and “just like the broccoli” the biomass will thaw and decay, releasing carbon into the atmosphere like any other decomposing plant material, Schaefer said. To predict how much carbon will enter the atmosphere and when, Schaefer and coauthors modeled the thaw and decay of organic matter currently frozen in permafrost under potential future warming conditions as predicted by the Intergovernmental Panel on Climate Change.

They found that between 29-59 percent of the permafrost will disappear by 2200. That permafrost took tens of thousands of years to form, but will melt in less than 200, Schaefer said.

Sound alarmist? In fact, there are three unrealistically conservative assumptions built into this paper:

1) The authors assume the ‘moderate warming’ scenario called A1B, which has atmospheric concentrations of CO2 reaching 520 ppm by 2050 and stabilizing at 700 ppm in 2100. But so far we seem to be living out the A1F1 scenario, which reaches 1000 ppm by century’s end.

2) Their estimate of future temperatures neglects the effect of greenhouse gases released by melting permafrost.

3) They assume all carbon emitted by permafrost will be in the form of CO2, not methane.

Point 2) means that the whole question of a feedback loop is not explored in this paper. I understand why. To do that, you can’t use someone else’s climate model: you need to build your own! But it’s something we need to study. Do you know anyone who is? Joe Romm says:

Countless studies make clear that global warming will release vast quantities of greenhouse gases into the atmosphere this decade. Yet, no climate model currently incorporates the amplifying feedback from methane released by a defrosting tundra.

If we try to understand this feedback, point 3) becomes important. After all, while methane goes away faster than CO2, its greenhouse effect is much stronger while it lasts. For the first 20 years, methane has about 72 times the global warming potential of carbon dioxide. Over the first 100 years, it’s about 25 times as powerful.

Let’s think about that a minute. In 2008, we burnt about 8 gigatonnes of carbon. If Schaefer et al are right, we can expect 1 extra gigatonne of carbon to be released from Arctic permafrost by around 2035. If that’s almost all in the form of carbon dioxide, it makes our situation slightly worse. But if a lot of it is methane, which is—let’s roughly say—72 times as bad—then our situation will be dramatically worse.

But I don’t know how much of the carbon released will be in the form of methane. I also don’t know how much of the methane will turn into other organic compounds before it gets into the atmosphere. I’d really like to know!

I hope you learn more about this stuff and help me out. Here are a few good references available for free online, to get started:

• Edward A. G. Schuur et al, Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle, Bioscience 58 (2008), 701-714.

• David M. Lawrence, Andrew G. Slater, Robert A. Tomas, Marika M. Holland and Clara Deser, Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss, Geophysical Research Letters 35 (2008), L11506.

• Amanda Leigh Mascarelli, A sleeping giant?, Nature Reports Climate Change, 5 March 2009.

The last one discusses the rise in atmospheric methane that was observed in 2007:

It also discusses the dangers of methane being released from ice-methane crystals called methane clathrates at the bottom of the ocean—something I’m deliberately not talking about here, because it deserves its own big discussion. However, there are also clathrates in the permafrost. Here’s a picture by W. F. Kuhs, showing what methane clathrate looks like at the atomic scale:

The green guy in the middle is methane, trapped in a cage of water molecules. Click for more details.

If you know more good references, please tell me about them here or add them to:

Permafrost, Azimuth Library.


Follow

Get every new post delivered to your Inbox.

Join 3,095 other followers