Conferences on Math and Climate Change

15 May, 2011

Here are some conferences on climate change and related issues, specially designed to get mathematicians interacting with scientists who work on these things! If you know of any more coming up, please let me know. These ones are sponsored by the Mathematics and Climate Research Network, a US-based organization, but there are probably others.

Society for Industrial and Applied Mathematics (SIAM) Conference on Applications of Dynamical Systems, Snowbird, Utah, US, 22-26 May, 2011. Organized by Jonathan Dawes and Vivien Kirk.

Climate modeling and data assimilation are among the themes of this conference, which is aimed at starting communication between mathematicians who develop dynamical systems techniques and the applied scientists who use them.

Mathematical Biosciences Institute (MBI) Workshop on Ocean Ecologies and their Physical Habitats in a Changing Climate, Columbus, Ohio, US, June 2011. Organized by Ken Golden, Chris Jones, Hans Kaper, and Mary Lou Zeeman.

The goal of this workshop is to bring together biologists studying ocean and polar ecologies; oceanographers, biogeochemists, and climate scientists studying the changing physical habitats; and mathematicians with ecological and physical expertise. The interactions between ocean ecological systems and their physical environments may dramatically impact both marine biodiversity and the planetary response to the changing atmosphere. The types of mathematics used to model ecological and physical processes are typically quite different. The team organizing this workshop anticipates interesting new mathematical challenges arising from combining these different approaches. The workshop will focus on two main themes:

1) polar and sea ice ecologies;

2) phytoplankton and the carbon cycle.

Minisymposium on the Dynamics of the Earth’s Climate, as part of the International Congress on Industrial and Applied Mathematics (ICIAM), Vancouver, British Columbia, July 2011.
Organized by Hans G. Kaper, Mary C. Silber and Mary Lou Zeeman.

The speakers in this mini-symposium will highlight some interesting mathematical problems that have come from climate science and can be addressed with techniques developed in the dynamical systems community.

Institute of Mathematics and its Applications (IMA) Conference on Mathematics of the Climate System, University of Reading, United Kingdom, 12-15 September, 2011. Organized by Paul Williams, Colin Cotter, Mike Cullen, Mike Davey, Christopher Ferro, John Huthnance and David Stainforth.

This conference is about the construction and use of mathematical models of the climate system. The conference will focus on three related topics:

1) the extraction of mathematical models from climate data and climate-model output (homogenisation, stochastic model reduction, bistability and metastable states, low frequency variability, data-driven coarse-graining, set-oriented methods, trend identification, time-series analysis);

2) reduced models and their dynamics (linear response theory, bifurcations, extreme events, uncertainty);

3) testing hypotheses about the climate system using statistical frameworks (emulators, Bayesian methods, nonparametric methods, equitability).


Stabilization Wedges (Part 5)

21 April, 2011

In 2004, Pacala and Socolow laid out a list of ways we can battle global warming using current technologies. They said that to avoid serious trouble, we need to choose seven ‘stabilization wedges’: that is, seven ways to cut carbon emissions by 1 gigatonne per year within 50 years. They listed 15 wedges to choose from, and I’ve told you about them here:

Part 1 – efficiency and conservation.

Part 2 – shifting from coal to natural gas, carbon capture and storage.

Part 3 – nuclear power and renewable energy.

Part 4 – reforestation, good soil management.

According to Pacala:

The message was a very positive one: “gee, we can solve this problem: there are lots of ways to solve it, and lots of ways for the marketplace to solve it.”

I find that interesting, because to me each wedge seems like a gargantuan enterprise—and taken together, they seem like the Seven Labors of Hercules. They’re technically feasible, but who has the stomach for them? I fear things need to get worse before we come to our senses and take action at the scale that’s required.

Anyway, that’s just me. But three years ago, Pacala publicly reconsidered his ideas for a very different reason. Based on new evidence, he gave a talk at Stanford where he said:

It’s at least possible that we’ve already let this thing go too far, and that the biosphere may start to fall apart on us, even if we do all this. We may have to fall back on some sort of dramatic Plan B. We have to stay vigilant as a species.

You can watch his talk here:

It’s pretty damned interesting: he’s a good speaker.

Here’s a dry summary of a few key points. I won’t try to add caveats: I’m sure he would add some himself in print, but I’d rather keep the message simple. I also won’t try to update his information! Not in this blog entry, anyway. But I’ll ask some questions, and I’ll be delighted if you help me out on those.

Emissions targets

First, Pacala’s review of different carbon emissions targets.

The old scientific view, circa 1998: if we could keep the CO2 from doubling from its preindustrial level of 280 parts per million, that would count as a success. Namely, most of the ‘monsters behind the door’ would not come out: continental ice sheets falling into the sea and swamping coastal cities, the collapse of the Atlantic ocean circulation, a drought in the Sahel region of Africa, etcetera.

Many experts say we’d be lucky to get away with CO2 merely doubling. At current burn rates we’ll double it by 2050, and quadruple it by the end of this century. We’ve got enough fossil fuels to send it to seven times its preindustrial levels.

Doubling it would take us to 560 parts per million. A lot of people think that’s too high to be safe. But going for lower levels gets harder:

• In Pacala and Socolow’s original paper, they talked about keeping CO2 below 500 ppm. This would require keeping CO2 emissions constant until 2050. This could be achieved by a radical decarbonization of the economies of rich countries, while allowing carbon emissions in poor countries to grow almost freely until that time.

• For a long time the IPCC and many organizations advocated keeping CO2 below 450 ppm. This would require cutting CO2 emissions by 50% by 2050, which could be achieved by a radical decarbonization in rich countries, and moderate decarbonization in poor countries.

• But by 2008 the IPCC and many groups wanted a cap of 2°C global warming, or keeping CO2 below 430 ppm. This would mean cutting CO2 emissions by 80% by 2050, which would require a radical decarbonization in both rich and poor countries.

The difference here is what poor people have to do. The rich countries need to radically cut carbon emissions in all these scenarios. In the USA, the Lieberman-Warner bill would have forced the complete decarbonization of the economy by 2050.

Then, Pacala spoke about 3 things that make him nervous:

1. Faster emissions growth

A 2007 paper by Canadell et al pointed out that starting in 2000, fossil fuel emissions started growing at 3% per year instead of the earlier figure of 1.5%. This could be due to China’s industrialization. Will this keep up in years to come? If so, the original Pacala-Socolow plan won’t work.

(How much, exactly, did the economic recession change this story?)

2. The ocean sink

Each year fossil fuel burning puts about 8 gigatons of carbon in the atmosphere. The ocean absorbs about 2 gigatons and the land absorbs about 2, leaving about 4 gigatons in the atmosphere.

However, as CO2 emissions rise, the oceanic CO2 sink has been growing less than anticipated. This seems to be due to a change in wind patterns, itself a consequence of global warming.

(What’s the latest story here?)

3. The land sink

As the CO2 levels go up, people expected plants to grow better and suck up more CO2. In the third IPCC report, models predicted that by 2050, plants will be drawing down 6 gigatonnes more carbon per year than they do now! The fourth IPCC report was similar.

This is huge: remember that right now we emit about 8 gigatonnes per year. Indeed, this effect, called CO2 fertilization, could be the difference between the land being a big carbon sink and a big carbon source. Why a carbon source? For one thing, without the plants sucking up CO2, temperatures will rise faster, and the Amazon rainforest may start to die, and permafrost in the Arctic may release more greenhouse gases (especially methane) as it melts.

In a simulation run by Pacala, where he deliberately assumed that plants fail to suck up more carbon dioxide, these effects happened and the biosphere dumped a huge amount of extra CO2 into the atmosphere: the equivalent of 26 stabilization wedges.

So, plans based on the IPCC models are essentially counting on plants to save us from ourselves.

But is there any reason to think plants might not suck up CO2 at the predicted rates?

Maybe. First, people have actually grown forests in doubled CO2 conditions to see how much faster plants grow then. But the classic experiment along these lines used young trees. In 2005, Körner et al did an experiment using mature trees… and they didn’t see them growing any faster!

Second, models in the third IPCC report assumed that as plants grew faster, they’d have no trouble getting all the nitrogen they need. But Hungate et al have argued otherwise. On the other hand, Alexander Barron discovered that some tropical plants were unexpectedly good at ramping up the rate at which they grab ahold of nitrogen from the atmosphere. But on the third hand, that only applies to the tropics. And on the fourth hand—a complicated problem like this requires one of those Indian gods with lots of hands—nitrogen isn’t the only limiting factor to worry about: there’s also phosphorus, for example.

Pacala goes on and discusses even more complicating factors. But his main point is simple. The details of CO2 fertilization matter a lot. It could make the difference between their original plan being roughly good enough… and being nowhere near good enough!

(What’s the latest story here?)


Mathematics of Planet Earth

20 March, 2011

While struggling to prepare my talk on “what mathematicians can do”, I remembered this website pointed out by Tom Leinster:

Mathematics of Planet Earth 2013.

The idea is to get lots of mathematicians involved in programs on these topics:

• Weather, climate, and environment
• Health, human and social services
• Planetary resources
• Population dynamics, ecology and genomics of species
• Energy utilization and efficiency
• Connecting the planet together
• Geophysical processes
• Global economics, safety and stability

There are already a lot of partner societies (including the American Mathematical Society) and partner institutes. I would love to see more details, but this website seems directed mainly at getting more organizations involved, rather than saying what any of them are going to do.

There is a call for proposals, but it’s a bit sketchy. It says:

A call to join is sent to the planet.

which makes me want to ask “From where?”

(That must be why I’m sitting here blogging instead of heading an institute somewhere. I never fully grew up.)

I guess the details will eventually become clearer. Does anyone know some activities that have been planned?


Summer Program on Climate Software

3 March, 2011

Here’s a great opportunity if you’re a student looking for something to do this summer. The Climate Code Foundation is working on open-source versions of important climate software. If you’re lucky, you could get paid to help!

• Climate Code Foundation, Google Summer of Code.

It seems the window for student applications is March 28-April 8.

They write:

Google have announced their Summer of Code, and we intend to be a mentoring organisation. If you’re a student, this is an opportunity to work on our open source code and earn a bit of money doing so (Google give a stipend of USD 5000 qualifying students, and an honorarium of USD 500 to the mentoring organisation).

We have an ideas page, most of which revolves around our ccc-gistemp project. Ideas range from improving ccc-gistemp in various ways, through novel reconstructions, to clear implementations of other climate codes. If you have ideas of your own, we’d like to hear about those too.

If you are interested in participating as a student, then please get in touch.

We have not been a Summer of Code mentor before, but we bring many years (decades even!) of experience to the table: experience in computer science, software engineering, project management, and so on. We hope to help students make a success of their projects!

In case you’re wondering, ccc-gistemp is a version of GISTEMP written in Python.

Isn’t it annoying how explaining one mysterious word can require two more? In case you’re still wondering: Python is a really groovy modern programming language, in comparison to older ones like FORTRAN—and GISTEMP is an important computer program, mostly written in FORTRAN, which NASA uses to analyze the historical temperature record. GISTEMP is what gives us graphs like this:



So, it’s very important to update this program and search the existing program for bugs—and that’s what the Climate Code Foundation is doing:

The “all Python” milestone was achieved with ccc-gistemp release 0.2.0 on 2010-01-11. Naturally we have found (minor) bugs while doing this, but nothing else. Since 0.2.0 we have made major simplifications, chiefly by removing dependencies, and generally processing data internally (by avoiding writing it to intermediate files, which was only necessary on computers that would be considered extremely memory constrained by today’s standards).

Work continue on further simplification, clarification, generalisation, and extension.

Hone your programming skills while helping save the planet!


This Week’s Finds (Week 310)

28 February, 2011

I first encountered Gregory Benford through his science fiction novels: my favorite is probably In the Ocean of Night.

Later I learned that he’s an astrophysicist at U.C. Irvine, not too far from Riverside where I teach. But I only actually met him through my wife. She sometimes teaches courses on science fiction, and like Benford, she has some involvement with the Eaton Collection at U.C. Riverside—the largest publicly accessible SF library in the world. So, I was bound to eventually bump into him.

When I did, I learned about his work on electromagnetic filaments near the center of our galaxy—see “week252” for more. I also learned he was seriously interested in climate change, and that he was going to the Asilomar International Conference on Climate Intervention Technologies—a controversial get-together designed to hammer out some policies for research on geoengineering.

Benford is a friendly but no-nonsense guy. Recently he sent me an email mentioning my blog, and said: "Your discussions on what to do are good, though general, while what we need is specifics NOW." Since I’d been meaning to interview him for a while, this gave me the perfect opening.

JB: You’ve been thinking about the future for a long time, since that’s part of your job as a science fiction writer.  For example, you’ve written a whole series about the expansion of human life through the galaxy.  From this grand perspective, global warming might seem like an annoying little road-bump before the ride even gets started.  How did you get interested in global warming? 

GB: I liked writing about the far horizons of our human prospect; it’s fun. But to get even above the envelope of our atmosphere in a sustained way, we have to stabilize the planet. Before we take on the galaxy, let’s do a smaller problem .

JB: Good point. We can’t all ship on out of here, and the way it’s going now, maybe none of us will, unless we get our act together.

Can you remember something that made you think "Wow, global warming is a really serious problem"?  As you know, not everyone is convinced yet.

GB: I looked at the migration of animals and then the steadily northward march of trees. They don’t read newspapers—the trees become newspapers—so their opinion matters more. Plus the retreat of the Arctic Sea ice in summer, the region of the world most endangered by the changes coming. I first focused on carbon capture using the CROPS method. I’m the guy who first proposed screening the Arctic with aerosols to cool it in summer.

JB: Let’s talk about each in turn. "CROPS" stands for Crop Residue Oceanic Permanent Sequestration. The idea sounds pretty simple: dump a lot of crop residues—stalks, leaves and stuff—on the deep ocean floor. That way, we’d be letting plants suck CO2 out of the atmosphere for us.

GB: Agriculture is the world’s biggest industry; we should take advantage of it. That’s what gave Bob Metzger and me the idea: collect farm waste and sink it to the bottom of the ocean, whence it shall not return for 1000 years. Cheap, easy, doable right now.

JB: But we have to think about what’ll happen if we dump all that stuff into the ocean, right? After all, the USA alone creates half a gigatonne of crop residues each year, and world-wide it’s ten times that. I’m getting these numbers from your papers:

• Robert A. Metzger and Gregory Benford, Sequestering of atmospheric carbon through permanent disposal of crop residue, Climatic Change 49 (2001), 11-19.

• Stuart E. Strand and Gregory Benford, Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments, Environmental Science and Technology 43 (2009), 1000-1007.

Since we’re burning over 7 gigatonnes of carbon each year, burying 5 gigatonnes of crop waste is just enough to make a serious dent in our carbon footprint. But what’ll that much junk do at the bottom of the ocean?

GB: We’re testing the chemistry of how farm waste interacts with deep ocean sites offshore Monterey Bay right now. Here’s a picture of a bale 3.2 km down:

JB: I’m sure our audience will have more questions about this… but the answers to some are in your papers, and I want to spend a bit more time on your proposal to screen the Arctic. There’s a good summary here:

• Gregory Benford, Climate controls, Reason Magazine, November 1997.

But in brief, it sounds like you want to test the results of spraying a lot of micron-sized dust into the atmosphere above the Arctic Sea during the summer. You suggest diatomaceous earth as an option, because it’s chemically inert: just silica. How would the test work, exactly, and what would you hope to learn?

GB: The US has inflight refueling aircraft such as the KC-10 Extender that with minor changes spread aerosols at relevant altitudes, and pilots who know how to fly big sausages filled with fluids.



Rather than diatomaceous earth, I now think ordinary SO2 or H2S will work, if there’s enough water at the relevant altitudes. Turns out the pollutant issue is minor, since it would be only a percent or so of the SO2 already in the Arctic troposphere. The point is to spread aerosols to diminish sunlight and look for signals of less sunlight on the ground, changes in sea ice loss rates in summer, etc. It’s hard to do a weak experiment and be sure you see a signal. Doing regional experiments helps, so you can see a signal before the aerosols spread much. It’s a first step, an in-principle experiment.

Simulations show it can stop the sea ice retreat. Many fear if we lose the sea ice in summer ocean currents may alter; nobody really knows. We do know that the tundra is softening as it thaws, making roads impassible and shifting many wildlife patterns, with unforeseen long term effects. Cooling the Arctic back to, say, the 1950 summer temperature range would cost maybe $300 million/year, i.e., nothing. Simulations show to do this globally, offsetting say CO2 at 500 ppm, might cost a few billion dollars per year. That doesn’t help ocean acidification, but it’s a start on the temperature problem.

JB: There’s an interesting blog on Arctic political, military and business developments:

• Anatoly Karlin, Arctic Progress.

Here’s the overview:

Today, global warming is kick-starting Arctic history. The accelerating melting of Arctic sea ice promises to open up circumpolar shipping routes, halving the time needed for container ships and tankers to travel between Europe and East Asia. As the ice and permafrost retreat, the physical infrastructure of industrial civilization will overspread the region […]. The four major populated regions encircling the Arctic Ocean—Alaska, Russia, Canada, Scandinavia (ARCS)—are all set for massive economic expansion in the decades ahead. But the flowering of industrial civilization’s fruit in the thawing Far North carries within it the seeds of its perils. The opening of the Arctic is making border disputes more serious and spurring Russian and Canadian military buildups in the region. The warming of the Arctic could also accelerate global warming—and not just through the increased economic activity and hydrocarbons production. One disturbing possibility is that the melting of the Siberian permafrost will release vast amounts of methane, a greenhouse gas that is far more potent than CO2, into the atmosphere, and tip the world into runaway climate change.

But anyway, unlike many people, I’m not mentioning risks associated with geoengineering in order to instantly foreclose discussion of it, because I know there are also risks associated with not doing it. If we rule out doing anything really new because it’s too expensive or too risky, we might wind up locking ourselves in a "business as usual" scenario. And that could be even more risky—and perhaps ultimately more expensive as well.

GB: Yes, no end of problems. Most impressive is how they look like a descending spiral, self-reinforcing.

Certainly countries now scramble for Arctic resources, trade routes opened by thawing—all likely to become hotly contested strategic assets. So too melting Himalayan glaciers can perhaps trigger "water wars" in Asia—especially India and China, two vast lands of very different cultures. Then, coming on later, come rising sea levels. Florida starts to go away. The list is endless and therefore uninteresting. We all saturate.

So droughts, floods, desertification, hammering weather events—they draw ever less attention as they grow more common. Maybe Darfur is the first "climate war." It’s plausible.

The Arctic is the canary in the climate coalmine. Cutting CO2 emissions will take far too long to significantly affect the sea ice. Permafrost melts there, giving additional positive feedback. Methane release from the not-so-perma-frost is the most dangerous amplifying feedback in the entire carbon cycle. As John Nissen has repeatedly called attention to, the permafrost permamelt holds a staggering 1.5 trillion tons of frozen carbon, about twice as much carbon as is in the atmosphere. Much would emerge as methane. Methane is 25 times as potent a heat-trapping gas as CO2 over a century, and 72 times as potent over the first 20 years! The carbon is locked in a freezer. Yet that’s the part of the planet warming up the fastest. Really bad news:

• Kevin Schaefer, Tingjun Zhang, Lori Bruhwiler and Andrew P. Barrett, Amount and timing of permafrost carbon release in response to climate warming, Tellus, 15 February 2011.

Abstract: The thaw and release of carbon currently frozen in permafrost will increase atmospheric CO2 concentrations and amplify surface warming to initiate a positive permafrost carbon feedback (PCF) on climate. We use surface weather from three global climate models based on the moderate warming, A1B Intergovernmental Panel on Climate Change emissions scenario and the SiBCASA land surface model to estimate the strength and timing of the PCF and associated uncertainty. By 2200, we predict a 29-59% decrease in permafrost area and a 53-97 cm increase in active layer thickness. By 2200, the PCF strength in terms of cumulative permafrost carbon flux to the atmosphere is 190±64 gigatonnes of carbon. This estimate may be low because it does not account for amplified surface warming due to the PCF itself and excludes some discontinuous permafrost regions where SiBCASA did not simulate permafrost. We predict that the PCF will change the arctic from a carbon sink to a source after the mid-2020s and is strong enough to cancel 42-88% of the total global land sink. The thaw and decay of permafrost carbon is irreversible and accounting for the PCF will require larger reductions in fossil fuel emissions to reach a target atmospheric CO2 concentration.

Particularly interesting is the slowing of thermohaline circulation.  In John Nissen’s "two scenarios" work there’s an uncomfortably cool future—if the Gulf Stream were to be diverted by meltwater flowing into NW Atlantic. There’s also an unbearably hot future, if the methane from not-so-permafrost and causes global warming to spiral out of control. So we have a terrifying menu.

JB: I recently interviewed Nathan Urban here. He explained a paper where he estimated the chance that the Atlantic current you’re talking about could collapse. (Technically, it’s the Atlantic meridional overturning circulation, not quite the same as the Gulf Stream.) They got a 10% chance of it happening in two centuries, assuming a business as usual scenario. But there are a lot of uncertainties in the modeling here.

Back to geoengineering. I want to talk about some ways it could go wrong, how soon we’d find out if it did, and what we could do then.

For example, you say we’ll put sulfur dioxide in the atmosphere below 15 kilometers, and most of the ozone is above 20 kilometers. That’s good, but then I wonder how much sulfur dioxide will diffuse upwards. As the name suggests, the stratosphere is "stratified" —there’s not much turbulence. That’s reassuring. But I guess one reason to do experiments is to see exactly what really happens.

GB: It’s really the only way to go forward. I fear we are now in the Decade of Dithering that will end with the deadly 2020s. Only then will experiments get done and issues engaged. All else, as tempting as ideas and simulations are, spell delay if they do not couple with real field experiments—from nozzle sizes on up to albedo measures —which finally decide.

JB: Okay. But what are some other things that could go wrong with this sulfur dioxide scheme? I know you’re not eager to focus on the dangers, but you must be able to imagine some plausible ones: you’re an SF writer, after all. If you say you can’t think of any, I won’t believe you! And part of good design is looking for possible failure modes.

GB: Plenty can go wrong with so vast an idea. But we can learn from volcanoes, that give us useful experiments, though sloppy and noisy ones, about putting aerosols into the air. Monitoring those can teach us a lot with little expense.

We can fail to get the aerosols to avoid clumping, so they fall out too fast. Or we can somehow trigger a big shift in rainfall patterns—a special danger in a system already loaded with surplus energy, as is already displaying anomalies like the bitter winters in Europe, floods in Pakistan, drought in Darfur. Indeed, some of Alan Robock’s simulations of Arctic aerosol use show a several percent decline in monsoon rain—though that may be a plus, since flooding is the #1 cause of death and destruction during the Indian monsoon.

Mostly, it might just plain fail to work. Guessing outcomes is useless, though.  Here’s where experiment rules, not simulations. This is engineering, which learns from mistakes. Consider the early days of aviation. Having more time to develop and test a system gives more time to learn how to avoid unwanted impacts. Of course, having a system ready also increases the probability of premature deployment; life is about choices and dangers.

More important right now than developing capability, is understanding the consequences of deployment of that capability by doing field experiments. One thing we know: both science and engineering advance most quickly by using the dance of theory with experiment. Neglecting this, preferring only experiment, is a fundamental mistake.

JB: Switching gears slightly: in March last year you went to the Asilomar Conference on climate intervention technologies. I’ve read the report:

• Asilomar Scientific Organizing Committee, The Asilomar Conference Recommendations on Principles for Research into Climate Engineering Techniques, Climate Institute, Washington DC, 2010.

It seems unobjectionable and a bit bland, no doubt deliberately so, with recommendations like this:

"Public participation and consultation in research planning and oversight, assessments, and development of decision-making mechanisms and processes must be provided."

What were some interesting things that you learned there? And what’ll happen next?

GB: It was the Woodstock of the policy wonks. I found it depressing. Not much actual science got discussed, and most just fearlessly called for more research, forming of panels and committees, etc. This is how bureaucracy digests a problem, turning it quite often into fertilizer.

I’m a physicist who does both theory and experiment. I want to see work that combines those to give us real information and paths to follow. I don’t see that anywhere now. Congress might hand out money for it but after the GAO report on geoengineering last September there seems little movement.

I did see some people pushing their carbon capture companies, to widespread disbelief. The simple things we could do right now like our CROPS carbon capture proposal are neglected, while entrepreneur companies hope for a government scheme to pay for sucking CO2 from the air. That’ll be the day!—far into the crisis, I think, maybe several decades from now. I also saw fine ideas pushed aside in favor of policy wonk initiatives. It was a classic triumph of process over results. As is many areas dominated by social scientists, people seemed to be saying, "Nobody can blame us if we go through the motions.”

That Decade of Dithering is upon us now. The great danger is that tipping points may not be obvious, even as we cross them. They may present as small events that nonetheless take us over an horizon from which we can never return.

For example, the loss of Greenland ice. Once the ice sheet melts down to an altitude below that needed to maintain it, we’ve lost it. The melt lubricates the glacier base and starts a slide we cannot stop. There are proposals of how to block that—essentially, draw the water out from the base as fast as it appears—but nobody’s funding such studies.

A reasonable, ongoing climate control program might cost $100 million annually. That includes small field experiments, trials with spraying aerosols, etc. We now spend about $5 billion per year globally studying the problem, so climate control studies would be 1/50 of that.

Even now, we may already be too late for a tipping point—we still barely glimpse the horrors we could be visiting on our children and their grandchildren’s grandchildren.

JB: I think a lot of young people are eager to do something. What would be your advice, especially to future scientists and engineers? What should they do? The problems seem so huge, and most so-called "adults" are shirking their responsibilities—perhaps hoping they’ll be dead before things get too bad.

GB: One reason people are paralyzed is simple: major interests would get hurt—coal, oil, etc. The fossil fuel industry is the second largest in the world; #1 is agriculture. We have ~50 trillion dollars of infrastructure invested in it. That and inertia—we’ve made the crucial fuel of our world a Bad Thing, and prohibition never works with free people. Look at the War on Drugs, now nearing its 40th anniversary.

That’s why I think adaptation—dikes, water conservation, reflecting roofs and blacktop to cool cities and lower their heating costs, etc.— is a smart way to prepare. We should also fund research in mineral weathering as a way to lock up CO2, which not only consumes CO2 but it can also generate ocean alkalinity. The acidification of the oceans is undeniable, easily measured, and accelerating. Plus geoengineering, which is probably the only fairly cheap, quick way to damp the coming chaos for a while. A stopgap, but we’re going to need plenty of those.

JB: And finally, what about you? What are you doing these days? Science fiction? Science? A bit of both?

Both, plus. Last year I published a look at how we viewed the future in the 20th Century, The Wonderful Future We Never Had, and have a novel in progress now cowritten with Larry Niven—about a Really Big Object. Plus some short stories and journalism.

My identical twin brother Jim & I published several papers looking at SETI from the perspective of those who would pay the bills for a SETI beacon, and reached conclusions opposite from what the SETI searches of the last half century have sought. Instead of steady, narrowband signals near 1 GHz, it is orders of magnitude cheaper to radiate pulsed, broadband beacon signals nearer 10 GHz. This suggests new way to look for pulsed signals, which some are trying to find. We may have been looking for the wrong thing all along. The papers are on the arXiv:

• James Benford, Gregory Benford and Dominic Benford, Messaging with cost optimized interstellar beacons.

• Gregory Benford, James Benford and Dominic Benford, Searching for cost optimized interstellar beacons.

For math types, David Wolpert and I have shown that Newcomb’s paradox arises from confusions in the statement, so is not a paradox:

• David H. Wolpert and Gregory Benford, What does Newcomb’s paradox teach us?

JB: The next guest on this show, Eliezer Yudkowsky, has also written about Newcomb’s paradox. I should probably say what it is, just for folks who haven’t heard yet. I’ll quote Yudkowsky’s formulation, since it’s nice and snappy:

A superintelligence from another galaxy, whom we shall call Omega, comes to Earth and sets about playing a strange little game. In this game, Omega selects a human being, sets down two boxes in front of them, and flies away.

Box A is transparent and contains a thousand dollars.
Box B is opaque, and contains either a million dollars, or nothing.

You can take both boxes, or take only box B.

And the twist is that Omega has put a million dollars in box B if and only if Omega has predicted that you will take only box B.

Omega has been correct on each of 100 observed occasions so far—everyone who took both boxes has found box B empty and received only a thousand dollars; everyone who took only box B has found B containing a million dollars. (We assume that box A vanishes in a puff of smoke if you take only box B; no one else can take box A afterward.)

Before you make your choice, Omega has flown off and moved on to its next game. Box B is already empty or already full.

Omega drops two boxes on the ground in front of you and flies off.

Do you take both boxes, or only box B?

If you say you’d take both boxes, I’ll argue that’s stupid: everyone who did that so far got just a thousand dollars, while the folks who took only box B got a million!

If you say you’d take only box B, I’ll argue that’s stupid: there has got to be more money in both boxes than in just one of them!

So, this puzzle has a kind of demonic attraction. Lots of people have written about it, though personally I’m waiting until a superintelligence from another galaxy actually shows up and performs this stunt.

Hmm—I see your paper uses Bayesian networks! I’ve been starting to think about those lately.

But I know that’s not all you’ve been doing.

GB: I also started several biotech companies 5 years ago, spurred in part by the agonizing experience of watching my wife die of cancer for decades, ending in 2002. They’re genomics companies devoted to extending human longevity by upregulating genes we know confer some defenses against cardio, neurological and other diseases. Our first product just came out, StemCell100, and did well in animal and human trials.

So I’m staying busy. The world gets more interesting all the time. Compared with growing up in the farm country of Alabama, this is a fine way to live.

JB: It’s been great to hear what you’re up to. Best of luck on all these projects, and thanks for answering my questions!


Few doubt that our climate stands in a class by itself in terms of complexity. Though much is made of how wondrous our minds are, perhaps the most complex entity known is our biosphere, in which we are mere mayflies. Absent a remotely useful theory of complexity in systems, we must proceed cautiously. – Gregory Benford


Postdoc Positions in Climate Mathematics

13 January, 2011

Young mathematicians interested in climate issues, check this out! There are some postdoc positions available where you can work with people who are doing really cool stuff. Click on their names or photos for more. And apply soon — they’ll start reviewing applications on the 20th of January!

The Mathematics and Climate Research Network is a nation-wide NSF funded initiative. Our goal is to define, develop and solve mathematical problems that arise in climate science. A number of postdoctoral positions will be available starting in Summer or Fall, 2011. The successful applicants will be known as Ed Lorenz Postdoctoral Fellows in the Mathematics of Climate and will have an affiliation with one of the network nodes. The topics of research will range from sea-ice processes to paleoclimate studies and data assimilation in climate models. The network has twelve funded nodes and a number of other collaborating institutions. For more details, see www.mathclimate.org.

The postdoctoral fellows will be based at the nodes indicated below. There will be considerable interaction possible with other network members through weekly web-based seminars and working groups. The network encourages and will support extended visits by postdocs to other nodes.

All interested recent PhDs are encouraged to apply. There are two steps necessary for a complete application: (1) posting materials to mathjobs.org (cover letter, CV, research statement and 3 letters of recommndation), and (2) completing a short questionnaire to be found at: http://jobs.mathclimate.org.

The specific positions with areas of focus, primary locations and postdoctoral mentors as well as institution relevant information are given below. Salaries will be competitive. The postdocs are multi-year and starting times will all be sometime Summer or Fall, 2011. Teaching one course per year will be an option in most positions.

1. Arizona State University (School of Mathematical and Statistical Sciences), Data assimilation and large complex models of the atmosphere. Mentors: Eric Kostelich and Alex Mahalov.

2. Bowdoin College (Department of Mathematics), Dynamical systems in climate process models and paleoclimate. Mentors: Mary-Lou Zeeman and Dick McGehee (Minnesota).

3. New York University (Courant Institute of Mathematical Sciences), Southern Ocean, sea ice, Antarctic ice sheet, and regional atmospheric modeling. Mentor: David Holland.

4. University of Chicago (Department of Geosciences), Modeling and analysis of climate processes such as water vapor and cloud feedback, atmospheric circulation, land and sea ice including applications to past climate, and modeling of carbon cycle fluctuations on varying time scales. Mentors: Pam Martin, Ray Pierrehumbert, Dorian Abbot and Mary Silber (Northwestern).

5. University of Utah (Department of Mathematics), Analysis of sea ice through modeling, computation, and methods of applied mathematics and physics. Field trips to the Arctic or Antarctic potentially part of postdoctoral work. Mentor: Ken Golden.

6. University of Vermont (Department of Mathematics and Statistics), Development of data assimilation methods and implementation on climate models, both conceptual and global. Mentors: Chris Danforth and Chris Jones (UNC-CH).

7. University of Washington (Department of Applied Mathematics), Analysis of historical climate data using linear and nonlinear time series techniques. Mentors: Ka-Kit Tung and Dave Camp (Calpoly-SLO).

Each of the universities involved is an Affirmative Action/Equal Opportunity employer and welcomes applications from women, underrepresented ethnic, racial and cultural groups, and from people with disabilities. Reviewing of applications will begin on Jan 20, 2011 but applications will continue to be accepted until the positions are filled.


Welcome to the Greenhouse

5 January, 2011

Happy New Year!

I just got back from Hanoi. I think I love it. It’s a fascinating city, full of street vendors and craftsmen and twisting back alleys and deep ‘tunnel houses’ and Buddhist temples and more. It’s over a thousand years old, layered with history. The Vietnamese have taken culture from all the more powerful countries that tried to invade them — the Chinese, the French, the Americans — and made it their own. You can see it all here.

At first I hated Hanoi. In the Old Quarter, the roads are packed with motorbikes zipping in all directions — and the sidewalks are all used either as motorbike parking lots, or restaurants with people sitting on little plastic chairs, so you pretty much need to walk in the road a lot of the time. Traffic lights are few and rarely heeded.

It seems like a pedestrian’s worst nightmare. Try walking across this:


But on my first night there, I ran in a philosopher friend from Singapore, an expert on Moore’s paradox: John Williams. He was sitting in a bar, looking out the door, watching the world go by. Strange coincidence!

So we had a beer, and I relaxed a bit, and I noticed that the traffic is actually governed by a set of unwritten rules that you can learn by watching. Little old ladies or gaggles of laughing teenagers can stroll across the street, motorbikes whizzing past them in both directions, and not get hurt! And so can you, once you learn what to do.

And then the fun starts. There’s way, way, way too much to tell you about, so I won’t even try now. Maybe later, probably on my diary.

I think Jeremy Kressman said it right: “You don’t just visit Hanoi. Hanoi visits you.” The picture above is from his blog. I’ll replace it with one of my own as soon as I get around to downloading my photos.

But as I’ve already hinted, this blog entry is not really about Hanoi. It’s about a new collection of SF stories, all tackling the theme of global warming:

• Gordon Van Gelder, editor, Welcome to the Greenhouse, O/R Books, 2011.

It includes stories by Brian W. Aldiss, Jeff Carlson, Judith Moffett, Matthew Hughes, Gregory Benford, Michael Alexander, Bruce Sterling, Joseph Green, Pat MacEwen, Alan Dean Foster, David Prill, George Guthridge, Paul Di Filippo, Chris Lawson, Ray Vukcevich and M. J. Locke.

It’s long past time for SF writers to start envisioning the world we seem to be heading towards. Were some of these stories published a while ago? Have you read any of them? Are they any good?

This item was pointed out to me by David Roberts. And by the way: in case you missed it, check out the global warming game that Giampiero Campa brought to our attention:

Fate of the World, website.

It’s not free, but Giampiero says it’s fun, and I trust him. He wrote:

But don’t waste your time, winning is plain impossible!

but then later:

I take it back, I have finally won today, which basically means that I got to the year 2120 with less than 3 degrees increment without destroying civilization. I mean, Latin America has to be rebuilt and there’s war raging in China, but other than that, it’s an excellent result :-)


Follow

Get every new post delivered to your Inbox.

Join 3,095 other followers