I, Robot

24 January, 2012

On 13 February 2012, I will give a talk at Google in the form of a robot. I will look like this:


My talk will be about “Energy, the Environment and What We Can Do.” Since I think we should cut unnecessary travel, I decided to stay here in Singapore and use a telepresence robot instead of flying to California.

I thank Mike Stay for arranging this at Google, and I especially thank Trevor Blackwell and everyone else at Anybots for letting me use one of their robots!

I believe Google will film this event and make a video available. But I hope reporters attend, because it should be fun, and I plan to describe some ways we can slash carbon emissions.

More detail: I will give this talk at 4 pm Monday, February 13, 2012 in the Paramaribo Room on the Google campus (Building 42, Floor 2). Visitors and reporters are invited, but they need to check in at the main visitor’s lounge in Building 43, and they’ll need to be escorted to and from the talk, so someone will pick them up 10 or 15 minutes before the talk starts.

Energy, the Environment and What We Can Do

Abstract: Our heavy reliance on fossil fuels is causing two serious problems: global warming, and the decline of cheaply available oil reserves. Unfortunately the second problem will not cancel out the first. Each one individually seems extremely hard to solve, and taken
together they demand a major worldwide effort starting now. After an overview of these problems, we turn to the question: what can we do about them?

I also need help from all of you reading this! I want to talk about solutions, not just problems—and given my audience, and the political deadlock in the US, I especially want to talk about innovative solutions that come from individuals and companies, not governments.

Can changing whole systems produce massive cuts in carbon emissions, in a way that spreads virally rather than being imposed through top-down directives? It’s possible. Curtis Faith has some inspiring thoughts on this:

I’ve been looking on various transportation and energy and environment issues for more than 5 years, and almost no one gets the idea that we can radically reduce consumption if we look at the complete systems. In economic terms, we currently have a suboptimal Nash Equilibrium with a diminishing pie when an optimal expanding pie equilibrium is possible. Just tossing around ideas a a very high level with back of the envelope estimates we can get orders of magnitude improvements with systemic changes that will make people’s lives better if we can loosen up the grip of the big corporations and government.

To borrow a physics analogy, the Nash Equilibrium is a bit like a multi-dimensional metastable state where the system is locked into a high energy configuration and any local attempts to make the change revert to the higher energy configuration locally, so it would require sufficient energy or energy in exactly the right form to move all the different metastable states off their equilibrium either simultaneously or in a cascade.

Ideally, we find the right set of systemic economic changes that can have a cascade effect, so that they are locally systemically optimal and can compete more effectively within the larger system where the Nash Equilibrium dominates. I hope I haven’t mixed up too many terms from too many fields and confused things. These terms all have overlapping and sometimes very different meaning in the different contexts as I’m sure is true even within math and science.

One great example is transportation. We assume we need electric cars or biofuel or some such thing. But the very assumption that a car is necessary is flawed. Why do people want cars? Give them a better alternative and they’ll stop wanting cars. Now, what that might be? Public transportation? No. All the money spent building a 2,000 kg vehicle to accelerate and decelerate a few hundred kg and then to replace that vehicle on a regular basis can be saved if we eliminate the need for cars.

The best alternative to cars is walking, or walking on inclined pathways up and down so we get exercise. Why don’t people walk? Not because they don’t want to but because our cities and towns have optimized for cars. Create walkable neighborhoods and give people jobs near their home and you eliminate the need for cars. I live in Savannah, GA in a very tiny place. I never use the car. Perhaps 5 miles a week. And even that wouldn’t be necessary with the right supplemental business structures to provide services more efficiently.

Or electricity for A/C. Everyone lives isolated in structures that are very inefficient to heat. Large community structures could be air conditioned naturally using various techniques and that could cut electricity demand by 50% for neighborhoods. Shade trees are better than insulation.

Or how about moving virtually entire cities to cooler climates during the hot months? That is what people used to do. Take a train North for the summer. If the destinations are low-resource destinations, this can be a huge reduction for the city. Again, getting to this state is hard without changing a lot of parts together.

These problems are not technical, or political, they are economic. We need the economic systems that support these alternatives. People want them. We’ll all be happier and use far less resources (and money). The economic system needs to be changed, and that isn’t going to happen with politics, it will happen with economic innovation. We tend to think of our current models as the way things are, but they aren’t. Most of the status quo is comprised of human inventions, money, fractional reserve banking, corporations, etc. They all brought specific improvements that made them more effective at the time they were introduce because of the conditions during those times. Our times too are different. Some new models will work much better for solving our current problems.

Your idea really starts to address the reason why people fly unnecessarily. This change in perspective is important. What if we went back to sailing ships? And instead of flying we took long leisurely educational seminar cruises on modern versions of sail yachts? What if we improved our trains? But we need to start from scratch and design new systems so they work together effectively. Why are we stuck with models of cities based on the 19th-century norms?

We aren’t, but too many people think we are because the scope of their job or academic career is just the piece of a system, not the system itself.

System level design thinking is the key to making the difference we need. Changes to the complete systems can have order of magnitude improvements. Changes to the parts will have us fighting for tens of percentages.

Do you know good references on ideas like this—preferably with actual numbers? I’ve done some research, but I feel I must be missing a lot of things.

This book, for example, is interesting:

• Michael Peters, Shane Fudge and Tim Jackson, editors, Low Carbon Communities: Imaginative Approaches to Combating Climate Change Locally, Edward Elgar Publishing Group, Cheltenham, UK, 2010.

but I wish it had more numbers on how much carbon emissions were cut by some of the projects they describe: Energy Conscious Households in Action, the HadLOW CARBON Community, the Transition Network, and so on.


What’s Up With Solar Power?

13 December, 2011

What’s going on with solar power? On the one hand, I read things like this:

• Paul Krugman, Here comes the sun, New York Times, 6 November 2011.

In fact, progress in solar panels has been so dramatic and sustained that, as a blog post at Scientific American put it, “there’s now frequent talk of a ‘Moore’s law’ in solar energy,” with prices adjusted for inflation falling around 7 percent a year.

This has already led to rapid growth in solar installations, but even more change may be just around the corner. If the downward trend continues–and if anything it seems to be accelerating—we’re just a few years from the point at which electricity from solar panels becomes cheaper than electricity generated by burning coal.

This would be a big deal! As you may have noticed, attempted political remedies for global warming aren’t working too well yet. Cheap solar power won’t be enough to solve the problem: even if we can build a grid that deals with the intermittency of solar power, the problem is that electric power only accounts for some of the fossil fuel burnt. But it could help.

On the other hand, I read things like this:

• Jackie Chang, Half of China solar firms halt production, says report, Digitimes, 9 December 2011.

About 50% of the firms in China’s solar industry have suspended production, according to the country’s Guangzhou Daily.

The daily cited the solar energy division of CSG Holding as claiming that half of the solar firms have stopped production, 30% have halved their output and 20% are trying to maintain certain levels of production.

Digitimes Research’s findings have indicated that only tier-one solar firms in China had capacity utilization rates over 80% in the first half of 2011 while tier-two and tier-three firms were already facing falling capacity utilization rates.

Guangzhou Daily stated that oversupply and significant price drops are the reasons for the firms to shut down production.

The report also indicated that China firms have been facing increasing production costs following news on September 2011 that one of the large-size solar players had a chemical leak at one of its plants that polluted a nearby river. This means the other solar firms now face increasing costs to prevent such pollution while suffering from sharp price drops and low demand.

And this:

• Yuliya Chernova, Chinese solar industry fueled by unsustainable debt, analysts say, Wall Street Journal, 8 December 2011.

Even now, as the U.S. reevaluates its federal loan and other subsidy programs for renewable energy, some lawmakers invoke the strong support the Chinese government offers to its own renewable energy industry as a call for the U.S. to match up with its own support.

Indeed, easy access to low-interest loans over the past three years helped Chinese solar makers build up capacity, and quickly take over market share from European and U.S. manufacturers. In 2010 alone, the China Development Bank made $35 billion in low-interest credit available to Chinese renewable energy companies, according to Bloomberg New Energy Finance, a figure cited by Energy Secretary Steven Chu in his testimony to the House Energy and Commerce Committee in mid-November.

But, perhaps an unintended consequence of this easy access to capital was that the cheap, plentiful production of solar panels resulted in a cutthroat pricing competition, which, in turn is now starting to suffocate the very same large, leading Chinese manufacturers.

“We remain concerned about debt levels across the solar manufacturing complex given the compression of profit margins,” wrote Think Equity analysts in a recent report. “With increasing net debt and reduced module prices, it is hard to imagine absolute gross margin dollars growing enough to offset existing OpEx and interest payments.”

It’s hard to know who to trust. Of course all three of these news reports could be true! Or none.

Do you know what’s really going on with solar power?


American Oil Boom?

26 September, 2011

If this is for real, it’s the biggest news I’ve heard for a long time:

Two years ago, America was importing about two thirds of its oil. Today, according to the Energy Information Administration, it imports less than half. And by 2017, investment bank Goldman Sachs predicts the US could be poised to pass Saudi Arabia and overtake Russia as the world’s largest oil producer.

This is from:

New boom reshapes oil world, rocks North Dakota, All Things Considered, National Public Radio, 25 September, 2011.

The new boom is due to technologies like fracking (short for hydraulic fracturing) and directional drilling. According to an estimate in this article, in the last few years advances in these technologies have made available up to 11 billion barrels of oil in the Bakken formation under North Dakota and Montana. There’s also a lot under the Canadian side of the border:

This map is from:

• Jerry Langton, Bakken Formation: Will it fuel Canada’s oil industry?, CBC News, 27 June 2008.

How big is this boom going to be? What will it mean? The National Public Radio story says this:

Amy Myers Jaffe of Rice University says in the next decade, new oil in the US, Canada and South America could change the center of gravity of the entire global energy supply.

“Some are now saying, in five or 10 years’ time, we’re a major oil-producing region, where our production is going up,” she says.

The US, Jaffe says, could have 2 trillion barrels of oil waiting to be drilled. South America could hold another 2 trillion. And Canada? 2.4 trillion. That’s compared to just 1.2 trillion in the Middle East and north Africa.

Jaffe says those new oil reserves, combined with growing turmoil in the Middle East, will “absolutely propel more and more investment into the energy resources in the Americas.”

Russia is already feeling the growth of American energy, Jaffe says. As the U.S. produces more of its own natural gas, Europe is free to purchase liquefied natural gas the US is no longer buying.

“They’re buying less natural gas from Russia,” Jaffe says. “So Russia would only supply 10 percent of European natural gas demand by 2030. That means the Russians are no longer powerful.”

The American energy boom, Jaffe says, could endanger many green-energy initiatives that have gained popularity in recent years. But royalties and revenue from U.S. production of oil and natural gas, she adds, could be used to invest in improving green technology.

What do you know about this news? Is it for real, is it being hyped? What do the smartest of the ‘peak oil’ crowd say?

I’ve read about the environmental impacts of fracking, and the consequences for global warming are evident. Since ‘carbon is forever’, to reduce carbon dioxide levels we need to either stop burning carbon or figure out a way to sequester CO2. A new oil boom won’t help us with that. And in the long run, we’ll still run out.

But the short run could last decades. Suppose people go ahead, ignore the dangers, and ‘drill, baby, drill’. How will geopolitics, the world economy, and the environment be affected?

Opinions are fine—everyone’s got one—but facts are better… and facts with references are the best.


Environmental News From China

13 August, 2011

I was unable to access this blog last week while I was in Changchun—sorry!

But I’m back in Singapore now, so here’s some news, mostly from the 2 August 2011 edition of China Daily, the government’s official English newspaper. As you’ll see, they’re pretty concerned about environmental problems. But to balance the picture, here’s a picture from Changbai Mountain, illustrating the awesome beauty of the parts of China that remain wild:

The Chinese have fallen in love with cars. Though less than 6% of Chinese own cars so far, that’s already 75 million cars, a market exceeded only by the US.

The price of real estate in China is shooting up—but as car ownership soars, you’ll have to pay a lot more if you want to buy a parking lot for your apartment. The old apartments don’t have them. In Beijing the average price of a parking lot is 140,000 yuan, which is about $22,000. In Shanghai it’s 150,000 yuan. But in fancy neighborhoods the price can be much higher: for example, up to 800,000 yuan in Beijing!

For comparison, the average salary in Beijing was 36,000 yuan in 2007—and the median is probably much lower, since there are lots of poor people and just a few rich ones. On top of that, I bet this figure doesn’t include the many undocumented people who have come from the countryside to work in Beijing. The big cities in China are much richer than the rest of the country: the average salary throughout the country was 11,000 yuan, and the average rural wage was just 3,600 yuan. This disparity is causing young people to flood into the cities, leaving behind villages mostly full of old folks.

Thanks to intensive use of coal, increasing car ownership and often-ignored regulations, air quality is bad in most Chinese cities. In Changchun, a typical summer day resembles the very worst days in Los Angeles, where the air is yellowish-grey except for a small blue region directly overhead.

In a campaign to improve the air quality in Beijing, drivers are getting subsidized to turn in cars made in 1995 or earlier. As usual, it’s the old clunkers that stink the worst: 27% of the cars in Beijing are over 8 years old, but they make 60% of the air pollution. The government is hoping to eliminate 400,000 old cars and cut the emission of nitrogen oxide by more than 10,000 tonnes per year by 2015.

But this policy is also supposed to stoke the market for new automobiles. That’s a bit strange, since Beijing is a huge city with massive traffic jams—some say the worst in the world! As a result, the government has taken strong steps to limit car sales in Beijing.


In Beijing, if you want to buy a car, you have to enter a lottery to get a license plate! Car sales have been capped at 240,000 this year, and for the first lottery people’s chances of winning were just one in ten:

• Louisa Lim, License plate lottery meant to curb Beijing traffic, Morning Edition, 26 January 2011.

Why is the government trying to stoke new car sales in Beijing while simultaneously trying to limit them? Maybe it’s just a rhetorical move to placate the car dealers, who hate the lottery system. Or maybe it’s because the government makes money from selling cars: it’s a state-controlled industry.

On another front, since July there has been a drought in the provinces of Gansu, Guizhou and Hunan, the Inner Mongolia autonomous region, and the Ningxia Hui autonomous region, which is home to many non-Han ethnic groups including the Hui. It’s caused water shortages for 4.3 million people. In some villages all the crops have died. Drought relief agencies are sending out more water pumps and delivering drinking water.

In Gansu province, at least, the current drought is part of a bigger desertification process.

Once they grew rice in Gansu, but then they moved to wheat:

• Tu Xin-Yi, Drought in Gansu, Tzu Chi, 5 January 2011.

China is among the nations that are experiencing severe desertification. One of the hardest hit areas is Gansu Province, deep in the nation’s heartland. The province, which includes parts of the Gobi, Badain Jaran, and Tengger Deserts, is suffering moisture drawdown year after year. As water goes up into the air, so does irrigation and agriculture. People can hardly make a living from the arid land.

But the land was once quite rich and hospitable to agriculture, a far cry from what greets the eye today. Ruoli, in central Gansu, epitomizes the big dry-up. The area used to be verdant farmland where, with abundant rainfall, all kinds of plants grew lush and dense; but now the land is dry and yields next to nothing. All this dramatic change has come about in just 50 years—lightning-fast, a mere blink of an eye in geological terms.

Rapid desertification is forcing many parties, including the government, to take action. Some residents have moved away to seek better livelihoods elsewhere, and the government offers incentives for people to relocate to the lowlands Tzu Chi built a new village to accommodate some of these migrants.

Tzu Chi is a Buddhist organization with a strong interest in climate change. The dramatic change they speak of seems to be part of a longer-term drying trend in this region. Here is one of a series of watchtowers near Dunhuang, once a thriving city at the eastern end of the Silk Road. I don’t think this area was such a desert back then:

Meanwhile, down in southern China, the Guanxi Zhuang autonomous region is seeing its worst electricity shortage in the last 2 decades, with 30% of the demand for electric power unmet, and rolling blackouts. They blame the situation on a shortage of coal and the fact that the local river isn’t deep enough to provide hydropower.

On the bright side, China is investing a lot in wind power. Their response to the financial crisis of of 2009 included $220 billion investment in renewable energy. Baoding province is now one of the world’s centers for producing wind turbines, and by 2020 China plans to have 100 gigawatts of peak wind power online.

That’s pretty good! Remember our discussion of Pacala and Socolow’s stabilization wedges? The world needs to reduce carbon emissions by roughly 10 gigatonnes per year by about 2050 to stay out of trouble. Pacala and Socolow call each 1-gigatonne slice of this carbon pie a ‘wedge’. We could reduce carbon emissions by one ‘wedge’ by switching 700 gigawatts of coal power to 2000 gigawatts of peak wind power. Why 700 of coal for 2000 of wind? Because unfortunately most of the time wind power doesn’t work at peak efficiency!

So, the Chinese plan to do 1/20 of a wedge of wind power by 2020. Multiply that effort by a factor of 200 worldwide by 2050, and we’ll be in okay shape. That’s quite a challenge! Of course we won’t do it all with wind.

And while the US and Europe are worried about excessive government and private debt, China is struggling to figure out how to manage its vast savings. China has a $3.2 trillion foreign reserve, which is 30% of the world’s total. The fraction invested in the US dollars has dropped from 71% in 1999 to 61% in 2010, but that’s still a lot of money, so any talk of the US defaulting, or a drop in the dollar, makes the Chinese government very nervous. This article goes into a bit more detail:

• Zhang Monan, Dollar depreciation dilemma, China Daily, 2 August 2011.

In a move to keep the value of their foreign reserves and improve their ratio of return, an increasing number of countries have set up sovereign wealth funds in recent years, especially since the onset of the global financial crisis. So far, nearly 30 countries or regions have established sovereign wealth funds and the total assets at their disposal amounted to $3.98 trillion in early 2011.

Compared to its mammoth official foreign reserve, China has made much slower progress than many countries in the expansion of its sovereign wealth funds, especially in its stock investments. Currently, China has only three main sovereign wealth funds: One with assets of $347.1 billion is managed by the Hong Kong-based SAFE Investment Co Ltd; the second, with assets of $288.8 billion, is managed by the China Investment Corporation, a wholly State-owned enterprise engaging in foreign assets investment; the third fund of $146.5 billion is managed by the National Social Security Fund.

From the perspective of its investment structure, China’s sovereign wealth funds have long attached excessive importance to mobility and security. For example, the China Investment Corporation has invested 87.4 percent of its funds in cash assets and only 3.2 percent in stocks, in sharp contrast to the global average of 45 percent in stock investments.

What’s interesting to me is that on the one hand we have these big problems, like global warming, and on the other hand these people with tons of money struggling to find good ways to invest it. Is there a way to make each of these problems the solution to the other?


The Stockholm Memorandum

1 June, 2011

In May this year, the 3rd Nobel Laureate Symposium produced a document called The Stockholm Memorandum signed by 17 Nobel laureates, presumably from among these participants. It’s a clear call to action, so I’ll reproduce it all here.

I. Mind-shift for a Great Transformation

The Earth system is complex. There are many aspects that we do not yet understand. Nevertheless, we are the first generation with the insight of the new global risks facing humanity.

We face the evidence that our progress as the dominant species has come at a very high price. Unsustainable patterns of production, consumption, and population growth are challenging the resilience of the planet to support human activity. At the same time, inequalities between and within societies remain high, leaving behind billions with unmet basic human needs and disproportionate vulnerability to global environmental change.

This situation concerns us deeply. As members of the 3rd Nobel Laureate Symposium we call upon all leaders of the 21st century to exercise a collective responsibility of planetary stewardship. This means laying the foundation for a sustainable and equitable global civilization in which the entire Earth community is secure and prosperous.

Science indicates that we are transgressing planetary boundaries that have kept civilization safe for the past 10,000 years. Evidence is growing that human pressures are starting to overwhelm the Earth’s buffering capacity.

Humans are now the most significant driver of global change, propelling the planet into a new geological epoch, the Anthropocene. We can no longer exclude the possibility that our collective actions will trigger tipping points, risking abrupt and irreversible consequences for human communities and ecological systems.

We cannot continue on our current path. The time for procrastination is over. We cannot afford the luxury of denial. We must respond rationally, equipped with scientific evidence.

Our predicament can only be redressed by reconnecting human development and global sustainability, moving away from the false dichotomy that places them in opposition.

In an interconnected and constrained world, in which we have a symbiotic relationship with the planet, environmental sustainability is a precondition for poverty eradication, economic development, and social justice.

Our call is for fundamental transformation and innovation in all spheres and at all scales in order to stop and reverse global environmental change and move toward fair and lasting prosperity for present and future generations.

II. Priorities for Coherent Global Action

We recommend a dual track approach:

a) emergency solutions now, that begin to stop and reverse negative environmental trends and redress inequalities in the inadequate institutional frameworks within which we operate, and

b) long term structural solutions that gradually change values, institutions and policy frameworks. We need to support our ability to innovate, adapt, and learn.

1. Reaching a more equitable world

Unequal distribution of the benefits of economic development are at the root of poverty. Despite efforts to address poverty, more than a third of the world’s population still live on less than $2 per day. This needs our immediate attention. Environment and development must go hand in hand. We need to:

• Achieve the Millennium Development Goals, in the spirit of the Millennium Declaration, recognising that global sustainability is a precondition of success.

• Adopt a global contract between industrialized and developing countries to scale up investment in approaches that integrate poverty reduction, climate stabilization, and ecosystem stewardship.

2. Managing the climate – energy challenge

We urge governments to agree on global emission reductions guided by science and embedded in ethics and justice. At the same time, the energy needs of the three billion people who lack access to reliable sources of energy need to be fulfilled. Global efforts need to:

• Keep global warming below 2°C, implying a peak in global CO2 emissions no later than 2015 and recognise that even a warming of 2°C carries a very high risk of serious impacts and the need for major adaptation efforts.

• Put a sufficiently high price on carbon and deliver the G-20 commitment to phase out fossil fuel subsidies, using these funds to contribute to the several hundred billion US dollars per year needed to scale up investments in renewable energy.

3. Creating an efficiency revolution

We must transform the way we use energy and materials. In practice this means massive efforts to enhance energy efficiency and resource productivity, avoiding unintended secondary consequences. The “throw away concept” must give way to systematic efforts to develop circular material flows. We must:

• Introduce strict resource efficiency standards to enable a decoupling of economic growth from resource use.

• Develop new business models, based on radically improved energy and material efficiency.

4. Ensuring affordable food for all

Current food production systems are often unsustainable, inefficient and wasteful, and increasingly threatened by dwindling oil and phosphorus resources, financial speculation, and climate impacts. This is already causing widespread hunger and malnutrition today. We can no longer afford the massive loss of biodiversity and reduction in carbon sinks when ecosystems are converted into cropland. We need to:

• Foster a new agricultural revolution where more food is produced in a sustainable way on current agricultural land and within safe boundaries of water resources.

• Fund appropriate sustainable agricultural technology to deliver significant yield increases on small farms in developing countries.

5. Moving beyond green growth

There are compelling reasons to rethink the conventional model of economic development. Tinkering with the economic system that generated the global crises is not enough. Markets and entrepreneurship will be prime drivers of decision making and economic change, but must be complemented by policy frameworks that promote a new industrial metabolism and resource use. We should:

• Take account of natural capital, ecosystem services and social aspects of progress in all economic decisions and poverty reduction strategies. This requires the development of new welfare indicators that address the shortcomings of GDP as an indicator of growth.

• Reset economic incentives so that innovation is driven by wider societal interests and reaches the large proportion of the global population that is currently not benefitting from these innovations.

6. Reducing human pressures

Consumerism, inefficient resource use and inappropriate technologies are the primary drivers of humanity’s growing impact on the planet. However, population growth also needs attention. We must:

• Raise public awareness about the impacts of unsustainable consumption and shift away from the prevailing culture of consumerism to sustainability.

• Greatly increase access to reproductive health services, education and credit, aiming at empowering women all over the world. Such measures are important in their own right but will also reduce birth rates.

7. Strengthening earth system governance

The multilateral system must be reformed to cope with the defining challenges of our time, namely transforming humanity’s relationship with the planet and rebuilding trust between people and nations. Global governance must be strengthened to respect planetary boundaries and to support regional, national and local approaches. We should:

• Develop and strengthen institutions that can integrate the climate, biodiversity and development agendas.

• Explore new institutions that help to address the legitimate interests of future generations.

8. Enacting a new contract between science and society

Filling gaps in our knowledge and deepening our understanding is necessary to find solutions to the challenges of the Anthropocene, and calls for major investments in science. A dialogue with decision-makers and the general public is also an important part of a new contract between science and society. We need to:

• Launch a major initiative on the earth system research for global sustainability, at a scale similar to those devoted to areas such as space, defence and health, to tap all sources of ingenuity across disciplines and across the globe.

• Scale up our education efforts to increase scientific literacy especially among the young.

We are the first generation facing the evidence of global change. It therefore falls upon us to change our relationship with the planet, in order to tip the scales towards a sustainable world for future generations.


Moore’s Law for Solar Power?

3 May, 2011

Here are two items that were forwarded to me by friends—Mike Stay and Greg Egan. First:

• Ramez Naam, The Moore’s Law of solar energy, Scientific American guest blog, 16 March 2011.

Executive summary: solar cost per watt is dropping on an exponential curve, and will drop below coal by 2020. As usual we see some graphs where the past is fairly wiggly:

while the future is a smooth and mathematically simple, starting tomorrow:

Both these graphs show the price per watt of photovoltaic solar modules (not counting installation), measured in 2009 dollars. Both graphs are logarithmic, so an exponential decline in price per watt would show up as a straight line.

Of course, anyone can draw a curve through points. The question is whether experts can see a way to keep the trend going!

On this, the author writes:

While in the earlier part of this decade prices flattened for a few years, the sharp decline in 2009 made up for that and put the price reduction back on track. Data from 2010 (not included above) shows at least a 30 percent further price reduction, putting solar prices ahead of this trend.

He also writes:

We should always be careful of extrapolating trends out, of course. Natural processes have limits. Phenomena that look exponential eventually level off or become linear at a certain point. Yet physicists and engineers in the solar world are optimistic about their roadmaps for the coming decade. The cheapest solar modules, not yet on the market, have manufacturing costs under $1 per watt, making them contenders – when they reach the market – for breaking the 12 cents per Kwh mark.

The exponential trend in solar watts per dollar has been going on for at least 31 years now. If it continues for another 8-10, which looks extremely likely, we’ll have a power source which is as cheap as coal for electricity, with virtually no carbon emissions. If it continues for 20 years, which is also well within the realm of scientific and technical possibility, then we’ll have a green power source which is half the price of coal for electricity.

What do you think? Is this for real?

By the way, Naam’s blog post has a chart showing efficiencies of various solar cell technologies. It’s unreadably small, but here’s a version you can click to enlarge:


What I want to caution you about is that some of the more efficient solar cells use expensive materials for which the world supply is limited. For more on this see

Photovoltaic solar power, Azimuth Wiki: efficiency and physics of solar cells.

Here’s another article:

• Kevin Bullis, More Power from Rooftop Solar: A startup says technology inspired by RAID hard drives can boost power output by up to 50 percent, Technology Review, 29 April 2011.

Immediately below the headline they tone down the claim slightly, saying “25 to 50 percent”. But that’s still a lot. The idea sounds nice, too:

Solar cells have become more efficient in recent years, but much of the improvement has gone to waste because of the way solar cells are put together in solar panels, the way the panels are wired together, and the way the electricity is converted into AC power for use in homes or on the grid. Typically, the power output from a string of solar cells is limited by the lowest-performing cell. So if a shadow falls on just one cell in a panel, the power output of the whole system drops dramatically. And failure at any point in the string can shut down the whole system.

TenKsolar has opted for a more complex wiring system—inspired by a reliable type of computer memory known as RAID (for “redundant array of independent disks”), in which hard disks are connected in ways that maintain performance even if some fail. TenKsolar’s design allows current to take many different paths through a solar-panel array, thus avoiding bottlenecks at low-performing cells and making it possible to extract far more of the electricity that the cells produce.


Equinox Summit

25 April, 2011

In response to my post asking What To Do?, Lee Smolin pointed out this conference on energy technologies:

Equinox Summit, 5-9 June 2011, Perimeter Institute/Waterloo University, Waterloo, Canada.

The idea:

The Equinox Summit will bring together leading top scientists in low-carbon technologies with a panel of industry and policy experts and the next generation of world leaders to pool their expertise and create a realistic roadmap from the energy challenges of today to a sustainable future by 2030.

These visionary researchers and decision makers will collaborate both in closed-door sessions and in free public presentations about the next generation of low-carbon energy solutions.

The public events are free but a ticket is required. Confirmed participants include these people:

Yacine Kadi CERN researcher Yacine Kadi, who is leading efforts to build next-generation nuclear reactors that eat their own waste.
Linda Nazar Canada Research Chair in Solid State Materials, Linda Nazar, who is researching new nanomaterials that could store more energy and deliver it faster.
Alan Aspuru-Guzik Harvard chemist Alan Aspuru-Guzik, recognized as one of the “Top 35 Under 35 Young Innovators” by the MIT Technology Review in 2010.
Cathy Foley Australian science agency chief Cathy Foley, whose research into superconductivity could lead to technological leaps in transportation and energy production.
Ted Sargent University of Toronto Electrical and Computer Engineering professor Ted Sargent, who has devised paint-on solar cell technology that harvests infrared energy from the Sun. His 2005 book “The Dance of the Molecules: How Nanotechnology is Changing our Lives” has been translated into French, Spanish, Italian, Korean, and Arabic.

Summit advisors and speakers include:

Robin Batterham Robin Batterham, President, Australian Academy of Technological Sciences and Engineers (ATSE), Former Chief Scientist of Australia, Former Chief Scientist, Rio Tinto.
Vaclav Smil Vaclav Smil, author of “Energy Myth and Realities: Bringing Science to the Energy Policy Debate” and “Transforming the Twentieth Century: Technical Innovations and Their Consequences” – the first non-American to receive the American Association for the Advancement of Science’s Award for Public Understanding of Science and Technology.

These descriptions of participants are from the conference website, so they’re a bit more gushy than anything I’d write, but it looks like an interesting crew! If you go there and learn something cool, try to remember to drop a line here.


Follow

Get every new post delivered to your Inbox.

Join 3,094 other followers