Here’s the math colloquium talk I gave at Georgia Tech this week:

• Hidden symmetries of the hydrogen atom.

Abstract.A classical particle moving in an inverse square central force, like a planet in the gravitational field of the Sun, moves in orbits that do not precess. This lack of precession, special to the inverse square force, indicates the presence of extra conserved quantities beyond the obvious ones. Thanks to Noether’s theorem, these indicate the presence of extra symmetries. It turns out that not only rotations in 3 dimensions, but also in 4 dimensions, act as symmetries of this system. These extra symmetries are also present in the quantum version of the problem, where they explain some surprising features of the hydrogen atom. The quest to fully understand these symmetries leads to some fascinating mathematical adventures.

I left out a lot of calculations, but someday I want to write a paper where I put them all in. This material is all *known*, but I feel like explaining it my own way.

In the process of creating the slides and giving the talk, though, I realized there’s a lot I don’t understand yet. Some of it is embarrassingly basic! For example, I give Greg Egan’s nice intuitive argument for how you can get some ‘Runge–Lenz symmetries’ in the 2d Kepler problem. I might as well just quote his article:

• Greg Egan, The ellipse and the atom.

He says:

Now, one way to find orbits with the same energy is by applying a rotation that leaves the sun fixed but repositions the planet. Any ordinary three-dimensional rotation can be used in this way, yielding another orbit with exactly the same shape, but oriented differently.

But there is another transformation we can use to give us a new orbit without changing the total energy. If we grab hold of the planet at either of the points where it’s travelling parallel to the axis of the ellipse, and then swing it along a circular arc centred on the sun, we can reposition it without altering its distance from the sun. But rather than rotating its velocity in the same fashion (as we would do if we wanted to rotate the orbit as a whole) we leave its velocity vector unchanged: its direction, as well as its length, stays the same.

Since we haven’t changed the planet’s distance from the sun, its potential energy is unaltered, and since we haven’t changed its velocity, its kinetic energy is the same. What’s more, since the speed of a planet of a given mass when it’s moving parallel to the axis of its orbit depends only on its total energy, the planet will still be in that state with respect to its new orbit, and so the new orbit’s axis must be parallel to the axis of the original orbit.

Rotations together with these ‘Runge–Lenz transformations’ generate an SO(3) action on the space of elliptical orbits of any given energy. But what’s the most geometrically vivid description of this SO(3) action?

Someone at my talk noted that you could grab the planet at *any* point of its path, and move to *anywhere* the same distance from the Sun, while keeping its speed the same, and get a new orbit with the same energy. Are all the SO(3) transformations of this form?

I have a bunch more questions, but this one is the simplest!