The Price of Everything

29 February, 2016

Astronomers using the Hubble Space Telescope have captured the most comprehensive picture ever assembled of the evolving Universe — and one of the most colourful. The study is called the Ultraviolet Coverage of the Hubble Ultra Deep Field (UVUDF) project.

I’m wondering whether anyone has attempted to compute the value of the whole Universe, in dollars.

This strikes me as a crazy idea—a kind of reductio ad absurdum of the economist’s worldview. But people have come pretty close, so I figure it’s just a matter of time. We might as well try it now.

Let me explain.

The price of the Earth

There’s a trend toward trying to estimate the value of ‘ecosystem services’, which means ‘the benefits of nature to households, communities, and economies’. There’s a practical reason to do this. Governments are starting to offer money to farmers and landowners in exchange for managing their land in a way that provides some sort of ecological service. So, they want to know how much these services are worth. You can read about this trend here:

• Wikipedia, Payment for ecosystem services.

It’s a booming field in economics. So, it’s perhaps inevitable that eventually someone would try to estimate the value of ecosystem services that the whole Earth provides to humanity each year:

• Robert Costanza et al, The value of the world’s ecosystem services and natural capital, Nature 387 (1997), 253–260.

They came up with an estimate of $33 trillion per year, which was almost twice the global GDP at the time. More precisely:

Abstract. The services of ecological systems and the natural capital stocks that produce them are critical to the functioning of the Earth’s life-support system. They contribute to human welfare, both directly and indirectly, and therefore represent part of the total economic value of the planet. We have estimated the current economic value of 17 ecosystem services for 16 biomes, based on published studies and a few original calculations. For the entire biosphere, the value (most of which is outside the market) is estimated to be in the range of US $16–54 trillion (1012) per year, with an average of US $33 trillion per year. Because of the nature of the uncertainties, this must be considered a minimum estimate. Global gross national product total is around US $18 trillion per year.

You can read the paper if you’re interested in the methodology.

In 2014, some of the authors of this paper redid the assessment—using a slightly modified methodology but with more detailed 2011 data—and increased their estimate to between $125–145 trillion a year:

• Robert Costanza, Changes in the global value of ecosystem services, Global Environmental Change 26 (2014), 152–158.

They also estimated a $4.3–20.2 trillion loss of ecosystem services due to land use change during the period from 1997 to 2011. While still difficult to define, this loss per year could be more meaningful than the total value of ecosystem services. Sometimes a change in some quantity can be measured even when the quantity itself cannot: a famous example is the electrostatic potential!

The price of humanity

Back in 1984, before he became the famous guru of string theory, the physicist Ed Witten did a rough calculation and got a surprising result:

• Edward Witten, Cosmic separation of phases, Phys. Rev. D 30 (1984), 272–285.

Protons and neutrons are made of up and down quarks held together by gluons. Strange quarks are more massive and thus only show up in more short-lived particles. However, at high pressures, when nuclear matter becomes a quark-gluon plasma, a mix of up, down and strange quarks could have less energy than just ups and downs!

The reason is the Pauli exclusion principle. You can only fit one up and one down in each energy level (or two, if you count their spin), so as you pack in more the energy has to increase. But adding strange quarks to the mix means you can pack 3 quarks into each energy level (or 6, counting spin). So, you can have more quarks at low energies. At high pressures, this effect will become more important than the fact that strange quarks have more mass.

For this reason, astronomers have become interested in the possibility of ‘strange stars’, more dense than ordinary neutron stars:

• Fridolin Weber, Strange quark matter and compact stars, Progress in Particle and Nuclear Physics 54 (2005), 193–288.

Unfortunately, nobody has seen evidence for them, as far as I can tell.

But the really weird part is that Witten’s calculations suggested that ‘strange matter’, containing a mix of up, down and strange quarks, could even be more stable than normal matter at ordinary temperatures and pressures! His calculation was very rough, so I wouldn’t take this too seriously. The fact that we don’t actually see strange matter is a very good sign that it’s not more stable than ordinary matter. In principle ordinary matter could be just ‘metastable’, waiting to turn into strange matter under the right conditions—sort of like how water turned into ice-9 in Kurt Vonnegut’s novel Cat’s Cradle. But it seems implausible.

Nonetheless, when the Relativistic Heavy Ion Collider or RHIC was getting ready to start colliding nuclei at high speeds at the Brookhaven National Laboratory, some people got worried that the resulting quark-gluon plasma could turn into strange matter—and then catalyze a reaction in which the whole Earth was quickly transformed into strange matter!

This is interesting example of a disaster that would have huge consequences, that is very improbable, but for which it’s hard to estimate the precise probability—or the precise cost.

So, a debate started!

Needless to say, not all the participants behaved rationally. Frank Close, professor of physics at the University of Oxford, said:

the chance of this happening is like you winning the major prize on the lottery 3 weeks in succession; the problem is that people believe it is possible to win the lottery 3 weeks in succession.

Eventually John Marburger, the director of the Brookhaven National Laboratory, commissioned a risk assessment by a committee of physicists before authorizing RHIC to begin operating:

• R.L. Jaffe, W. Busza, J.Sandweiss and F. Wilczek, Review of speculative “disaster scenarios” at RHIC, 1999.

In 2000, a lawyer and former physics lab technician named Walter L. Wagner tried to stop experiments at RHIC by filing federal lawsuits in San Francisco and New York. Both suits were dismissed. The experiment went ahead, nuclei of gold were collided to form a quark-gluon plasma with a temperature of 4 trillion kelvin, and we lucked out: nothing bad happened.

This is very interesting, but what matters to me now is this book:

• Richard A. Posner, Catastrophe: Risk and Response, Oxford U. Press, Oxford, 2004.

in which a distinguished US judge attempted to do a cost-benefit analysis of the Relativistic Heavy Ion Collider.

He estimated a $600 million cost for constructing the device and a $1.1 billion cost for operating it for ten years (discounted at a rate of 3% per year). He guessed at a potential total benefit of $2.1 billion—which he said was probably a huge overestimate. This gave a net benefit of $400 million.

Then he took into account the risk that the experiment would destroy the Earth! He very conservatively estimated the price of a human life at $50,000. He multiplied this by the number of people now living, and doubled the result to include the value of all people who might live in the future, getting $600 trillion.

This may seem odd, but discounting the value of future goods can make even an endless stream of future human lives have a finite total value. More annoying to me is that he only took humans into account: as far as I can tell, he did not assign any value to any other organisms on the Earth!

But let’s not make fun of Posner: he freely admitted that this result was very rough and perhaps meaningless! He was clearly just trying to start a discussion. His book tries to examine both sides of every issue.

Anyway: his estimate of the cost of human extinction was $600 trillion. He then multiplied this by the probability that RHIC could wipe out the human race. He estimated that probability at 1 in 10 million per year, or 1 in a million for a ten-year-long experiment. So, he got $600 million as the extra cost of RHIC due to the possibility that it could make the human race go extinct.

Taking the net benefit of $400 million and subtracting this $600 million cost of our possible extinction, he got a negative number. So, he argued, we should not turn on RHIC.

Clearly there are lots of problems with this idea. I don’t believe the entire human race has a well-defined monetary value. I’m inclined to believe that monetary value only makes sense for things that you can buy and sell. But it’s not so easy to figure out the ‘correct’ way to make decisions that involve small probabilities of huge disasters.

The price of the Universe

Suppose, just for fun, that we accept Posner’s $600 trillion estimate for the value of the Earth. What then is the value of the Universe?

I think it’s a stupid question, but I feel sure someone is going to answer it someday, so it might as well be me. Maybe someone has already done it: if so, let me know. But let me give it a try.

I’ll be very relaxed about this, so it won’t take long.

We could try to calculate the value of the Universe by estimating the number of planets with intelligent life and multiplying that by $600 trillion. It’s very hard to guess the number of such planets per cubic megaparsec. But since the Universe seems to extend indefinitely, the result is infinite.

That’s my best estimate: infinity!

But that’s not very satisfying. What if we limit ourselves to the observable Universe?

No matter what I say, I’ll get in trouble, but let me estimate that there’s one intelligent civilization per galaxy.

A conservative estimate is that there are 100 billion galaxies in the observable universe. There might be twice as many, but perhaps a lot of them are small or less likely to support life for various other reasons.

So, I get $600 trillion times 100 billion, or


as my estimate of the value of the observable Universe. That’s $6 × 1025, or $60 septillion.

The price of everything

The title of the article is taken from a line in Oscar Wilde’s play Lady Windermere’s Fan:

Cecil Graham: What is a cynic?

Lord Darlington: A man who knows the price of everything, and the value of nothing.

Aggressively Expanding Civilizations

5 February, 2016

Ever since I became an environmentalist, the potential destruction wrought by aggressively expanding civilizations has been haunting my thoughts. Not just here and now, where it’s easy to see, but in the future.

In October 2006, I wrote this in my online diary:

A long time ago on this diary, I mentioned my friend Bruce Smith’s nightmare scenario. In the quest for ever faster growth, corporations evolve toward ever faster exploitation of natural resources. The Earth is not enough. So, ultimately, they send out self-replicating von Neumann probes that eat up solar systems as they go, turning the planets into more probes. Different brands of probes will compete among each other, evolving toward ever faster expansion. Eventually, the winners will form a wave expanding outwards at nearly the speed of light—demolishing everything behind them, leaving only wreckage.

The scary part is that even if we don’t let this happen, some other civilization might.

The last point is the key one. Even if something is unlikely, in a sufficiently large universe it will happen, as long as it’s possible. And then it will perpetuate itself, as long as it’s evolutionarily fit. Our universe seems pretty darn big. So, even if a given strategy is hard to find, if it’s a winning strategy it will get played somewhere.

So, even in this nightmare scenario of "spheres of von Neumann probes expanding at near lightspeed", we don’t need to worry about a bleak future for the universe as a whole—any more than we need to worry that viruses will completely kill off all higher life forms. Some fraction of civilizations will probably develop defenses in time to repel the onslaught of these expanding spheres.

It’s not something I stay awake worrying about, but it’s a depressingly plausible possibility. As you can see, I was trying to reassure myself that everything would be okay, or at least acceptable, in the long run.

Even earlier, S. Jay Olson and I wrote a paper together on the limitations in accurately measuring distances caused by quantum gravity. If you try to measure a distance too accurately, you’ll need to concentrate so much energy in such a small space that you’ll create a black hole!

That was in 2002. Later I lost touch with him. But now I’m happy to discover that he’s doing interesting work on quantum gravity and quantum information processing! He is now at Boise State University in Idaho, his home state.

But here’s the cool part: he’s also studying aggressively expanding civilizations.

Expanding bubbles

What will happen if some civilizations start aggressively expanding through the Universe at a reasonable fraction of the speed of light? We don’t have to assume most of them do. Indeed, there can’t be too many, or they’d already be here! More precisely, the density of such civilizations must be low at the present time. The number of them could be infinite, since space is apparently infinite. But none have reached us. We may eventually become such a civilization, but we’re not one yet.

Each such civilization will form a growing ‘bubble’: an expanding sphere of influence. And occasionally, these bubbles will collide!

Here are some pictures from a simulation he did:

As he notes, the math of these bubbles has already been studied by researchers interested in inflationary cosmology, like Alan Guth. These folks have considered the possibility that in the very early Universe, most of space was filled with a ‘false vacuum’: a state of matter that resembles the actual vacuum, but has higher energy density.

A false vacuum could turn into the true vacuum, liberating energy in the form of particle-antiparticle pairs. However, it might not do this instantly! It might be ‘metastable’, like ball number 1 in this picture:

It might need a nudge to ‘roll over the hill’ (metaphorically) and down into the lower-energy state corresponding to the true vacuum, shown as ball number 3. Or, thanks to quantum mechanics, it might ‘tunnel’ through this hill.

The balls and the hill are just an analogy. What I mean is that the false vacuum might need to go through a stage of having even higher energy density before it could turn into the true vacuum. Random fluctuations, either quantum-mechanical or thermal, could make this happen. Such a random fluctuation could happen in one location, forming a ‘bubble’ of true vacuum that—under certain conditions—would rapidly expand.

It’s actually not very different from bubbles of steam forming in superheated water!

But here’s the really interesting Jay Olson noted in his first paper on this subject. Research on bubbles in the inflationary cosmology could actually be relevant to aggressively expanding civilizations!

Why? Just as a bubble of expanding true vacuum has different pressure than the false vacuum surrounding it, the same might be true for an aggressively expanding civilization. If they are serious about expanding rapidly, they may convert a lot of matter into radiation to power their expansion. And while energy is conserved in this process, the pressure of radiation in space is a lot bigger than the pressure of matter, which is almost zero.

General relativity says that energy density slows the expansion of the Universe. But also—and this is probably less well-known among nonphysicists—it says that pressure has a similar effect. Also, as the Universe expands, the energy density and pressure of radiation drops at a different rate than the energy density of matter.

So, the expansion of the Universe itself, on a very large scale, could be affected by aggressively expanding civilizations!

The fun part is that Jay Olson actually studies this in a quantitative way, making some guesses about the numbers involved. Of course there’s a huge amount of uncertainty in all matters concerning aggressively expanding high-tech civilizations, so he actually considers a wide range of possible numbers. But if we assume a civilization turns a large fraction of matter into radiation, the effects could be significant!

The effect of the extra pressure due to radiation would be to temporarily slow the expansion of the Universe. But the expansion would not be stopped. The radiation will gradually thin out. So eventually, dark energy—which has negative pressure, and does not thin out as the Universe expands—will win. Then the Universe will expand exponentially, as it is already beginning to do now.

(Here I am ignoring speculative theories where dark energy has properties that change dramatically over time.)

Jay Olson’s work

Here are his papers on this subject. The abstracts sketch his results, but you have to look at the papers to see how nice they are. He’s thought quite carefully about these things.

• S. Jay Olson, Homogeneous cosmology with aggressively expanding civilizations, Classical and Quantum Gravity 32 (2015) 215025.

Abstract. In the context of a homogeneous universe, we note that the appearance of aggressively expanding advanced life is geometrically similar to the process of nucleation and bubble growth in a first-order cosmological phase transition. We exploit this similarity to describe the dynamics of life saturating the universe on a cosmic scale, adapting the phase transition model to incorporate probability distributions of expansion and resource consumption strategies. Through a series of numerical solutions spanning several orders of magnitude in the input assumption parameters, the resulting cosmological model is used to address basic questions related to the intergalactic spreading of life, dealing with issues such as timescales, observability, competition between strategies, and first-mover advantage. Finally, we examine physical effects on the universe itself, such as reheating and the backreaction on the evolution of the scale factor, if such life is able to control and convert a significant fraction of the available pressureless matter into radiation. We conclude that the existence of life, if certain advanced technologies are practical, could have a significant influence on the future large-scale evolution of the universe.

• S. Jay Olson, Estimates for the number of visible galaxy-spanning civilizations and the cosmological expansion of life.

Abstract. If advanced civilizations appear in the universe with a desire to expand, the entire universe can become saturated with life on a short timescale, even if such expanders appear but rarely. Our presence in an untouched Milky Way thus constrains the appearance rate of galaxy-spanning Kardashev type III (K3) civilizations, if it is assumed that some fraction of K3 civilizations will continue their expansion at intergalactic distances. We use this constraint to estimate the appearance rate of K3 civilizations for 81 cosmological scenarios by specifying the extent to which humanity could be a statistical outlier. We find that in nearly all plausible scenarios, the distance to the nearest visible K3 is cosmological. In searches where the observable range is limited, we also find that the most likely detections tend to be expanding civilizations who have entered the observable range from farther away. An observation of K3 clusters is thus more likely than isolated K3 galaxies.

• S. Jay Olson, On the visible size and geometry of aggressively expanding civilizations at cosmological distances.

Abstract. If a subset of advanced civilizations in the universe choose to rapidly expand into unoccupied space, these civilizations would have the opportunity to grow to a cosmological scale over the course of billions of years. If such life also makes observable changes to the galaxies they inhabit, then it is possible that vast domains of life-saturated galaxies could be visible from the Earth. Here, we describe the shape and angular size of these domains as viewed from the Earth, and calculate median visible sizes for a variety of scenarios. We also calculate the total fraction of the sky that should be covered by at least one domain. In each of the 27 scenarios we examine, the median angular size of the nearest domain is within an order of magnitude of a percent of the whole celestial sphere. Observing such a domain would likely require an analysis of galaxies on the order of a giga-lightyear from the Earth.

Here are the main assumptions in his first paper:

1. At early times (relative to the appearance of life), the universe is described by the standard cosmology – a benchmark Friedmann-Robertson-Walker (FRW) solution.

2. The limits of technology will allow for self-reproducing spacecraft, sustained relativistic travel over cosmological distances, and an efficient process to convert baryonic matter into radiation.

3. Control of resources in the universe will tend to be dominated by civilizations that adopt a strategy of aggressive expansion (defined as a frontier which expands at a large fraction of the speed of the individual spacecraft involved), rather than those expanding diffusively due to the conventional pressures of population dynamics.

4. The appearance of aggressively expanding life in the universe is a spatially random event and occurs at some specified, model-dependent rate.

5. Aggressive expanders will tend to expand in all directions unless constrained by the presence of other civilizations, will attempt to gain control of as much matter as is locally available for their use, and once established in a region of space, will consume mass as an energy source (converting it to radiation) at some specified, model-dependent rate.

Ken Caldeira on What To Do

25 January, 2016

Famous climate scientist Ken Caldeira has a new article out:

• Ken Caldeira, Stop Emissions!, Technology Review, January/February 2016, 41–43.

Let me quote a bit:

Many years ago, I protested at the gates of a nuclear power plant. For a long time, I believed it would be easy to get energy from biomass, wind, and solar. Small is beautiful. Distributed power, not centralized.

I wish I could still believe that.

My thinking changed when I worked with Marty Hoffert of New York University on research that was first published in Nature in 1998. It was the first peer-reviewed study that examined the amount of near-zero-emission energy we would need in order to solve the climate problem. Unfortunately, our conclusions still hold. We need massive deployment of affordable and dependable near-zero-emission energy, and we need a major research and development program to develop better energy and transportation systems.

It’s true that wind and solar power have been getting much more attractive in recent years. Both have gotten significantly cheaper. Even so, neither wind nor solar is dependable enough, and batteries do not yet exist that can store enough energy at affordable prices to get a modern industrial society through those times when the wind is not blowing and the sun is not shining.

Recent analyses suggest that wind and solar power, connected by a continental-scale electric grid and using natural-gas power plants to provide backup, could reduce greenhouse-gas emissions from electricity production by about two-thirds. But generating electricity is responsible for only about one-third of total global carbon dioxide emissions, which are increasing by more than 2 percent a year. So even if we had this better electric sector tomorrow, within a decade or two emissions would be back where they are today.

We need to bring much, much more to bear on the climate problem. It can’t be solved unless it is addressed as seriously as we address national security. The politicians who go to the Paris Climate Conference are making commitments that fall far short of what would be needed to substantially reduce climate risk.

Daunting math

Four weeks ago, a hurricane-strength cyclone smashed into Yemen, in the Arabian Peninsula, for the first time in recorded history. Also this fall, a hurricane with the most powerful winds ever measured slammed into the Pacific coast of Mexico.

Unusually intense storms such as these are a predicted consequence of global warming, as are longer heat waves and droughts and many other negative weather-related events that we can expect to become more commonplace. Already, in the middle latitudes of the Northern Hemisphere, average temperatures are increasing at a rate that is equivalent to moving south about 10 meters (30 feet) each day. This rate is about 100 times faster than most climate change that we can observe in the geologic record, and it gravely threatens biodiversity in many parts of the world. We are already losing about two coral reefs each week, largely as a direct consequence of our greenhouse-gas emissions.

Recently, my colleagues and I studied what will happen in the long term if we continue pulling fossil carbon out of the ground and releasing it into the atmosphere. We found that it would take many thousands of years for the planet to recover from this insult. If we burn all available fossil-fuel resources and dump the resulting carbon dioxide waste in the sky, we can expect global average temperatures to be 9 °C (15 °F) warmer than today even 10,000 years into the future. We can expect sea levels to be about 60 meters (200 feet) higher than today. In much of the tropics, it is possible that mammals (including us) would not be able to survive outdoors in the daytime heat. Thus, it is essential to our long-term well-being that fossil-fuel carbon does not go into our atmosphere.

If we want to reduce the threat of climate change in the near future, there are actions to take now: reduce emissions of short-lived pollutants such as black carbon, cut emissions of methane from natural-gas fields and landfills, and so on. We need to slow and then reverse deforestation, adopt electric cars, and build solar, wind, and nuclear plants.

But while existing technologies can start us down the path, they can’t get us to our goal. Most analysts believe we should decarbonize electricity generation and use electricity for transportation, industry, and even home heating. (Using electricity for heating is wildly inefficient, but there may be no better solution in a carbon-constrained world.) This would require a system of electricity generation several times larger than the one we have now. Can we really use existing technology to scale up our system so dramatically while markedly reducing emissions from that sector?

Solar power is the only energy source that we know can power civilization indefinitely. Unfortunately, we do not have global-scale electricity grids that could wheel solar energy from day to night. At the scale of the regional electric grid, we do not have batteries that can balance daytime electricity generation with nighttime demand.

We should do what we know how to do. But all the while, we need to be thinking about what we don’t know how to do. We need to find better ways to generate, store, and transmit electricity. We also need better zero-carbon fuels for the parts of the economy that can’t be electrified. And most important, perhaps, we need better ways of using energy.

Energy is a means, not an end. We don’t want energy so much as we want what it makes possible: transportation, entertainment, shelter, and nutrition. Given United Nations estimates that the world will have at least 11 billion people by the end of this century (50 percent more than today), and given that we can expect developing economies to grow rapidly, demand for services that require energy is likely to increase by a factor of 10 or more over the next century. If we want to stabilize the climate, we need to reduce total emissions from today’s level by a factor of 10. Put another way, if we want to destroy neither our environment nor our economy, we need to reduce the emissions per energy service provided by a factor of 100. This requires something of an energy miracle.

The essay continues.

Near the end, he writes “despite all these reasons for despair, I’m hopeful”. He is hopeful that a collective change of heart is underway that will enable humanity to solve this problem. But he doesn’t claim to know any workable solution to the problem. In fact, he mostly list reasons why various possible solutions won’t be enough.

Fires in Indonesia

2 November, 2015

I lived in Singapore for two years, and I go back to work there every summer. I love Southeast Asia, its beautiful landscapes, its friendly people, and its huge biological and cultural diversity. It’s a magical place.

But in 2013 there was a horrible haze from fires in nearby Sumatra. And this year it’s even worse. It makes me want to cry, thinking about how millions of people all over this region are being choked as the rain forest burns.

This part of the world has a dry season from May to October and then a wet season. In the dry season, Indonesian farmers slash down jungle growth, burn it, and plant crops. That is nothing new.

But now, palm oil plantations run by big companies do this on a massive scale. Jungles are disappearing at an astonishing rate. Some of this is illegal, but corrupt government officials are paid to look the other way. Whenever we buy palm oil—in soap, cookies, bread, margarine, detergents, and many other products—we become part of the problem.

This year the fires are worse. One reason is that we’re having an El Niño. That typically means more rain in California—which we desperately need. But it means less rain in Southeast Asia.

This summer it was very dry in Singapore. Then, in September, the haze started. We got used to rarely seeing the sun—only yellow-brown light filtering through the smoke. When it stinks outside, you try to stay indoors.

When I left on September 19th, the PSI index of air pollution had risen above 200, which is ‘very unhealthy’. Singapore had offered troops to help fight the fires, but Indonesia turned down the offer, saying they could handle the situation themselves. That was completely false: thousands of fires were burning out of control in Sumatra, Borneo and other Indonesian islands.

I believe the Indonesian government just didn’t want foreign troops out their land. Satellites could detect the many hot spots where fires were burning. But outrageously, the government refused to say who owned those lands.

A few days after I left, the PSI index in Singapore had shot above 300, which is ‘hazardous’. But in parts of Borneo the PSI had reached 1,986. The only name for that is hell.

By now Indonesia has accepted help from Singapore. Thanks to changing winds, the PSI in Singapore has been slowly dropping throughout October. In the last few days the rainy season has begun. Each time the rain clears the air, Singaporeans can see something beautiful and almost forgotten: a blue sky.

Rain is also helping in Borneo. But the hellish fires continue. There have been over 100,000 individual fires—mostly in Sumatra, Borneo and Papua. In many places, peat in the ground has caught on fire! It’s very hard to put out a peat fire.

If you care about the Earth, this is very disheartening. These fires have been putting over 15 million tons of carbon dioxide into the air per day – more than the whole US economy! And so far this year they’ve put out 1.5 billion tons of CO2. That’s more than Germany’s carbon emissions for the whole year—in fact, even more than Japan’s. How can we make progress on reducing carbon emissions with this going on?

For you and me, the first thing is to stop buying products with palm oil. The problem is largely one of government corruption driven by money from palm oil plantations. But the real heart of the problem lies in Indonesia. Luckily Widodo, the president of this country, may be part of the solution. But the solution will be difficult.

Quoting National Public Radio:

Widodo is Indonesia’s first president with a track record of efficient local governance in running two large cities. Strong action on the haze issue could help fulfill the promise of reform that motivated Indonesian voters to put him in office in October 2014.

The president has deployed thousands of firefighters and accepted international assistance. He has ordered a moratorium on new licenses to use peat land and ordered law enforcers to prosecute people and companies who clear land by burning forests.

“It must be stopped, we mustn’t allow our tropical rainforests to disappear because of monoculture plantations like oil palms,” Widodo said early in his administration.

Land recently burned and planted with palm trees is now under police investigation in Kalimantan [the Indonesian part of Borneo].

The problem of Indonesia’s illegal forest fires is so complex that it’s very hard to say exactly who is responsible for causing it.

Indonesia’s government has blamed both big palm oil companies and small freeholders. Poynton [executive director of the Forest Trust] says the culprits are often mid-sized companies with strong ties to local politicians. He describes them as lawless middlemen who pay local farmers to burn forests and plant oil palms, often on other companies’ concessions.

“There are these sort of low-level, Mafioso-type guys that basically say, ‘You get in there and clear the land, and I’ll then finance you to establish a palm oil plantation,'” he says.

The problem is exacerbated by ingrained government corruption, in which politicians grant land use permits for forests and peat lands to agribusiness in exchange for financial and political support.

“The disaster is not in the fires,” says independent Jakarta-based commentator Wimar Witoelar. “It’s in the way that past Indonesian governments have colluded with big palm oil businesses to make the peat lands a recipe for disaster.”

The quote is from here:

• Anthony Kuhn, As Indonesia’s annual fires rage, plenty of blame but no responsibility.

For how to avoid using palm oil, see for example:

• Lael Goodman, How many products with palm oil do I use in a day?

First, avoid processed foods. That’s smart for other reasons too.

Second, avoid stuff that contains stearic acid, sodium palmitate, sodium laureth sulfate, cetyl alcohol, glyceryl stearate and related compounds—various forms of artificial grease that are often made from palm oil. It takes work to avoid all this stuff, but at least be aware of it. These chemicals are not made in laboratories from pure carbon, hydrogen, oxygen and nitrogen! The raw ingredients often come from palm plantations, huge monocultures that are replacing the wonderful diversity of rainforest life.

For more nuanced suggestions, see the comments below. Right now I’m just so disgusted that I want to avoid palm oil.

For data on the carbon emissions of this and other fires, see:

Global fire emissions data.

1997 was the last really big El Niño.

This shows a man in Malaysia in September. Click on the pictures for more details. The picture at top shows a woman named a woman named Gaye Thavisin in Indonesia—perhaps in Kalimantan, the Indonesian half of Borneo, the third largest island in the world. Here is a bit of her story:

The Jungle River Cruise is run by Kalimantan Tour Destinations a foreign owned company set up by two women pioneering the introduction of ecotourism into a part of Central Kalimantan that to date has virtually no tourism.

Inspired by the untapped potential of Central Kalimantan’s mighty rivers, Gaye Thavisin and Lorna Dowson-Collins converted a traditional Kalimantan barge into a comfortable cruise boat with five double cabins, an inside sitting area and a upper viewing deck, bringing the first jungle cruises to the area.

Originally Lorna Dowson-Collins worked in Central Kalimantan with a local NGO on a sustainable livelihoods programme. The future livelihoods of the local people were under threat as logging left the land devastated with poor soils and no forest to fend from.

Kalimantan was teeming with the potential of her people and their fascinating culture, with beautiful forests of diverse flora and fauna, including the iconic orang-utan, and her mighty rivers providing access to these wonderful treasures.

An idea for a social enterprise emerged , which involved building a boat to journey guests to inaccessible places and provide comfortable accommodation.

Gaye Thavisin, an Australian expatriate, for 4 years operated an attractive, new hotel 36 km out of Palangkaraya in Kalimantan. Gaye was passionate about developing the tourism potential of Central Kalimantan and was also looking at the idea of boats. With her contract at the hotel coming to an end, the Jungle Cruise began to take shape!

Why Google Gave Up

5 January, 2015

I was disappointed when Google gave up. In 2007, the company announced a bold initiative to fight global warming:

Google’s Goal: Renewable Energy Cheaper than Coal

Creates renewable energy R&D group and supports breakthrough technologies

Mountain View, Calif. (November 27, 2007) – Google (NASDAQ: GOOG) today announced a new strategic initiative to develop electricity from renewable energy sources that will be cheaper than electricity produced from coal. The newly created initiative, known as RE<C, will focus initially on advanced solar thermal power, wind power technologies, enhanced geothermal systems and other potential breakthrough technologies. RE<C is hiring engineers and energy experts to lead its research and development work, which will begin with a significant effort on solar thermal technology, and will also investigate enhanced geothermal systems and other areas. In 2008, Google expects to spend tens of millions on research and development and related investments in renewable energy. As part of its capital planning process, the company also anticipates investing hundreds of millions of dollars in breakthrough renewable energy projects which generate positive returns.

But in 2011, Google shut down the program. I never heard why. Recently two engineers involved in the project have given a good explanation:

• Ross Koningstein and David Fork, What it would really take to reverse climate change, 18 November 2014.

Please read it!

But the short version is this. They couldn’t find a way to accomplish their goal: producing a gigawatt of renewable power more cheaply than a coal-fired plant — and in years, not decades.

And since then, they’ve been reflecting on their failure and they’ve realized something even more sobering. Even if they’d been able to realize their best-case scenario — a 55% carbon emissions cut by 2050 — it would not bring atmospheric CO2 back below 350 ppm during this century.

This is not surprising to me.

What would we need to accomplish this? They say two things. First, a cheap dispatchable, distributed power source:

Consider an average U.S. coal or natural gas plant that has been in service for decades; its cost of electricity generation is about 4 to 6 U.S. cents per kilowatt-hour. Now imagine what it would take for the utility company that owns that plant to decide to shutter it and build a replacement plant using a zero-carbon energy source. The owner would have to factor in the capital investment for construction and continued costs of operation and maintenance—and still make a profit while generating electricity for less than $0.04/kWh to $0.06/kWh.

That’s a tough target to meet. But that’s not the whole story. Although the electricity from a giant coal plant is physically indistinguishable from the electricity from a rooftop solar panel, the value of generated electricity varies. In the marketplace, utility companies pay different prices for electricity, depending on how easily it can be supplied to reliably meet local demand.

“Dispatchable” power, which can be ramped up and down quickly, fetches the highest market price. Distributed power, generated close to the electricity meter, can also be worth more, as it avoids the costs and losses associated with transmission and distribution. Residential customers in the contiguous United States pay from $0.09/kWh to $0.20/kWh, a significant portion of which pays for transmission and distribution costs. And here we see an opportunity for change. A distributed, dispatchable power source could prompt a switchover if it could undercut those end-user prices, selling electricity for less than $0.09/kWh to $0.20/kWh in local marketplaces. At such prices, the zero-carbon system would simply be the thrifty choice.

But “dispatchable”, they say, means “not solar”.

Second, a lot of carbon sequestration:

While this energy revolution is taking place, another field needs to progress as well. As Hansen has shown, if all power plants and industrial facilities switch over to zero-carbon energy sources right now, we’ll still be left with a ruinous amount of CO2 in the atmosphere. It would take centuries for atmospheric levels to return to normal, which means centuries of warming and instability. To bring levels down below the safety threshold, Hansen’s models show that we must not only cease emitting CO2 as soon as possible but also actively remove the gas from the air and store the carbon in a stable form. Hansen suggests reforestation as a carbon sink. We’re all for more trees, and we also exhort scientists and engineers to seek disruptive technologies in carbon storage.

How to achieve these two goals? They say government and energy businesses should spend 10% of employee time on “strange new ideas that have the potential to be truly disruptive”.

Information Aversion

22 August, 2014


Why do ostriches stick their heads under the sand when they’re scared?

They don’t. So why do people say they do? A Roman named Pliny the Elder might be partially to blame. He wrote that ostriches “imagine, when they have thrust their head and neck into a bush, that the whole of their body is concealed.”

That would be silly—birds aren’t that dumb. But people will actually pay to avoid learning unpleasant facts. It seems irrational to avoid information that could be useful. But people do it. It’s called information aversion.

Here’s a new experiment on information aversion:

In order to gauge how information aversion affects health care, one group of researchers decided to look at how college students react to being tested for a sexually transmitted disease.

That’s a subject a lot of students worry about, according to Josh Tasoff, an economist at Claremont Graduate University who led the study along with Ananda Ganguly, an associate professor of accounting at Claremont McKenna College.

The students were told they could get tested for the herpes simplex virus. It’s a common disease that spreads via contact. And it has two forms: HSV1 and HSV2.

The type 1 herpes virus produces cold sores. It’s unpleasant, but not as unpleasant as type 2, which targets the genitals. Ganguly says the college students were given information — graphic information — that made it clear which kind of HSV was worse.

“There were pictures of male and female genitalia with HSV2, guaranteed to kind of make them really not want to have the disease,” Ganguly says.

Once the students understood what herpes does, they were told a blood test could find out if they had either form of the virus.

Now, in previous studies on information aversion it wasn’t always clear why people declined information. So Tasoff and Ganguly designed the experiment to eliminate every extraneous reason someone might decline to get information.

First, they wanted to make sure that students weren’t declining the test because they didn’t want to have their blood drawn. Ganguly came up with a way to fix that: All of the students would have to get their blood drawn. If a student chose not to get tested, “we would draw 10 cc of their blood and in front of them have them pour it down the sink,” Ganguly says.

The researchers also assured the students that if they elected to get the blood tested for HSV1 and HSV2, they would receive the results confidentially.

And to make triply sure that volunteers who said they didn’t want the test were declining it to avoid the information, the researchers added one final catch. Those who didn’t want to know if they had a sexually transmitted disease had to pay $10 to not have their blood tested.

So what did the students choose? Quite a few declined a test.

And while only 5 percent avoided the HSV1 test, three times as many avoided testing for the nastier form of herpes.

For those who didn’t want to know, the most common explanation was that they felt the results might cause them unnecessary stress or anxiety.

Let’s try extrapolating from this. Global warming is pretty scary. What would people do to avoid learning more about it? You can’t exactly pay scientists to not tell you about it. But you can do lots of other things: not listen to them, pay people to contradict what they’re saying, and so on. And guess what? People do all these things.

So, don’t expect that scaring people about global warming will make them take action. If a problem seems scary and hard to solve, many people will just avoid thinking about it.

Maybe a better approach is to tell people things they can do about global warming. Even if these things aren’t big enough to solve the problem, they can keep people engaged.

There’s a tricky issue here. I don’t want people to think turning off the lights when they leave the room is enough to stop global warming. That’s a dangerous form of complacency. But it’s even worse if they decide global warming is such a big problem that there’s no point in doing anything about it.

There are also lots of subtleties worth exploring in further studies. What, exactly, are the situations where people seek to avoid unpleasant information? What are the situations where they will accept it? This is something we need to know.

The quote is from here:

• Shankar Vedantham, Why we think ignorance Is bliss, even when It hurts our health, Morning Edition, National Public Radio, 28 July 2014.

Here’s the actual study:

• Ananda Ganguly and Joshua Tasoff, Fantasy and dread: the demand for information and the consumption utility of the future.

Abstract. Understanding the properties of intrinsic information preference is important for predicting behavior in many domains including finance and health. We present evidence that intrinsic demand for information about the future is increasing in expected future consumption utility. In the first experiment subjects may resolve a lottery now or later. The information is useless for decision making but the larger the reward, the more likely subjects are to pay to resolve the lottery early. In the second experiment subjects may pay to avoid being tested for HSV-1 and the more highly feared HSV-2. Subjects are three times more likely to avoid testing for HSV-2, suggesting that more aversive outcomes lead to more information avoidance. We also find that intrinsic information demand is negatively correlated with positive affect and ambiguity aversion.

Here’s an attempt by economists to explain information aversion:

• Marianne Andries and Valentin Haddad, Information aversion, 27 February 2014.

Abstract. We propose a theory of inattention solely based on preferences, absent any cognitive limitations and external costs of acquiring information. Under disappointment aversion, information decisions and risk attitude are intertwined, and agents are intrinsically information averse. We illustrate this link between attitude towards risk and information in a standard portfolio problem, in which agents balance the costs, endogenous in our framework, and benefits of information. We show agents never choose to receive information continuously in a diffusive environment: they optimally acquire information at infrequent intervals only. We highlight a novel channel through which the optimal frequency of information acquisition decreases when risk increases, consistent with empirical evidence. Our framework accommodates a broad range of applications, suggesting our approach can explain many observed features of decision under uncertainty.

The photo, probably fake, is from here.

West Antarctic Ice Sheet News

16 May, 2014

You may have heard the news: two teams of scientists claiming that the West Antarctic Ice Sheet has been irreversibly destablized, leading to a slow-motion process that in some number of centuries will cause 3 meters of sea level rise.

“Today we present observational evidence that a large section of the West Antarctic Ice Sheet has gone into irreversible retreat,” an author of one of the papers, Eric Rignot, a glaciologist at NASA’s Jet Propulsion Laboratory, said at a news conference recently. “It has passed the point of no return.”

A little context might help.

The West Antarctic Ice Sheet is the ice sheet that covers Antarctica on the Western Hemisphere side of the Transantarctic Mountains. The bed of this ice sheet lies well below sea level. The ice gradually flows into floating ice shelves such as the Ross Ice Shelf and Ronne Ice Shelf, and also glaciers that dump ice into the Amundsen Sea. Click on the map to make it bigger, so you can see all these features.

The West Antarctic Ice Sheet contains about 2.2 million cubic kilometers of ice, enough to raise the world’s oceans about 4.8 meters if it all melted. To get a sense of how big it is, let’s visit a crack in one of its outlet glaciers.

In 2011, scientists working in Antarctica discovered a massive crack across the Pine Island Glacier, a major glacier in the West Antarctic Ice Sheet. The crack was 30 kilometers long, 80 meters wide and 60 meters deep. The pictures above and below show this crack—the top one is from NASA, the bottom one was taken by an explorer named Forrest McCarthy.

By July 2013, the crack expanded to the point where a slab of ice 720 square kilometers in size broke off and moved into the Amundsen Sea.

However, this event is not the news! The news is about what’s happening at the bottom of the glaciers of the West Antarctic Ice Sheet.

The West Antarctic Ice Sheet sits in a bowl-shaped depression in the earth, with the bottom of the ice below sea level. Warm ocean water is causing the ice sitting along the rim of the bowl to thin and retreat. As the edge of the ice moves away from the rim and enters deeper water, it can retreat faster.

So, there could be a kind of tipping point, where the West Antarctic Ice Sheet melts faster and faster as its bottom becomes exposed to more water. Scientists have been concerned about this for decades. But now two teams of scientists claim that tipping point has been passed.

Here’s a video that illustrates the process:

And here’s a long quote from a short ‘news and analysis’ article by Thomas Sumner in the 16 May 2014 issue of Science:

A disaster may be unfolding—in slow motion. Earlier this week, two teams of scientists reported that Thwaites Glacier, a keystone holding the massive West Antarctic Ice Sheet together, is starting to collapse. In the long run, they say, the entire ice sheet is doomed. Its meltwater would raise sea levels by more than 3 meters.

One team combined data on the recent retreat of the 182,000-square-kilometer Thwaites Glacier with a model of the glacier’s dynamics to forecast its future. In a paper on page 735, they report that in as few as 2 centuries Thwaites Glacier’s edge will recede past an underwater ridge now stalling its retreat. Their models suggest that the glacier will then cascade into rapid collapse. The second team, writing in Geophysical Research Letters, describes recent radar mapping of West Antarctica’s glaciers and confirms that the 600-meter-deep ridge is the final obstacle before the bedrock underlying the glacier dips into a deep basin.

Because inland basins connect Thwaites Glacier to other major glaciers in the region, both research teams say its collapse would flood West Antarctica with seawater, prompting a near-complete loss of ice in the area over hundreds of years.

“The next stable state for the West Antarctic Ice Sheet might be no ice sheet at all,” says the Science paper’s lead author, glaciologist Ian Joughin of the University of Washington, Seattle. “Very crudely, we are now committed to global sea level rise equivalent to a permanent Hurricane Sandy storm surge,” says glaciologist Richard Alley of Pennsylvania State University, University Park, referring to the storm that ravaged the Caribbean and the U.S. East Coast in 2012. Alley was not involved in either study.

Where Thwaites Glacier meets the Amundsen Sea, deep warm water burrows under the ice sheet’s base, forming an ice shelf from which icebergs break off. When melt and iceberg creation outpace fresh snowfall farther inland, the glacier shrinks. According to the radar mapping released this week in Geophysical Research Letters from the European Remote Sensing satellite, from 1992 to 2011 Thwaites Glacier retreated 14 kilometers. “Nowhere else in Antarctica is changing this fast,” says University of Washington Seattle glaciologist Benjamin Smith, co-author of the Science paper.

To forecast Thwaites Glacier’s fate, the team plugged satellite and aircraft radar maps of the glacier’s ice and underlying bedrock into a computer model. In simulations that assumed various melting trends, the model accurately reproduced recent ice-loss measurements and churned out a disturbing result: In all but the most conservative melt scenarios, a glacial collapse has already started. In 200 to 500 years, once the glacier’s “grounding line”—the point at which the ice begins to float—retreats past the ridge, the glacier’s face will become taller and, like a tower of blocks, more prone to collapse. The retreat will then accelerate to more than 5 kilometers per year, the team says. “On a glacial timescale, 200 to 500 years is the blink of an eye,” Joughin says.

And once Thwaites is gone, the rest of West Antarctica would be at risk.

Eric Rignot, a climate scientist at the University of California, Irvine, and the lead author of the GRL study, is skeptical of Joughin’s timeline because the computer model used estimates of future melting rates instead of calculations based on physical processes such as changing sea temperatures. “These simulations ought to go to the next stage and include realistic ocean forcing,” he says. If they do, he says, they might predict an even more rapid retreat.

I haven’t had time to carefully read the relevant papers, which are these:

• Eric Rignot, J. Mouginot, M. Morlighem, H. Seroussi and B. Scheuchl, Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith and Kohler glaciers, West Antarctica from 1992 to 2011, Geophysical Research Letters, accepted 12 May 2014.

• Ian Joughin, Benjamin E. Smith and Brooke Medley, Marine ice sheet collapse potentially underway for the Thwaites glacier basin, West Antarctica, Science, 344 (2014), 735–738.

I would like to say something more detailed about them someday.

The paper by Eric Rignot et al. is freely available—just click on the title. Unfortunately, you can’t read the other paper unless you have a journal subscription. Sumner’s article which I quoted is also not freely available. I wish scientists and the journal Science took more seriously their duty to make important research available to the public.

Here’s a video that shows Pine Island Glacier, Thwaites Glacier and some other nearby glaciers: