Climate Technology Primer (Part 1)

5 October, 2019

Here’s the first of a series of blog articles on how technology can help address climate change:

• Adam Marblestone, Climate technology primer (1/3): basics.

Adam Marblestone is a research scientist at Google DeepMind studying connections between neuroscience and artificial intelligence. Previously, he was Chief Strategy Officer of the brain-computer interface company Kernel, and a research scientist in Ed Boyden’s Synthetic Neurobiology Group at MIT working to develop new technologies for brain circuit mapping. He also helped to start companies like BioBright, and advised foundations such as the Open Philanthropy Project.

Now, like many of us, he’s thinking about climate change, and what to do about it. He writes:

In this first of three posts, I attempt an outsider’s summary of the basic physics/chemistry/biology of the climate system, focused on back of the envelope calculations where possible. At the end, I comment a bit about technological approaches for emissions reductions. Future posts will include a review of the science behind negative emissions technologies, as well as the science (with plenty of caveats, don’t worry) behind more controversial potential solar radiation management approaches. This first post should be very basic for anyone “in the know” about energy, but I wanted to cover the basics before jumping into carbon sequestration technologies.

Check it out! I like the focus on “back of the envelope” calculations because they serve as useful sanity checks for more complicated models… and also provide a useful vaccination against the common denialist argument “all the predictions rely on complicated computer models that could be completely wrong, so why should I believe them?” It’s a sad fact that one of the things we need to do is make sure most technically literate people have a basic understanding of climate science, to help provide ‘herd immunity’ to everyone else.

The ultimate goal here, though, is to think about “what can technology do about climate change?”


Klein on the Green New Deal

14 September, 2019

I’m going to try to post more short news items. For example, here’s a new book I haven’t read yet:

• Naomi Klein, On Fire: The (Burning) Case for a Green New Deal, Simon and Schuster, 2019.

I think she’s right when she says this:

I feel confident in saying that a climate-disrupted future is a bleak and an austere future, one capable of turning all our material possessions into rubble or ash with terrifying speed. We can pretend that extending the status quo into the future, unchanged, is one of the options available to us. But that is a fantasy. Change is coming one way or another. Our choice is whether we try to shape that change to the maximum benefit of all or wait passively as the forces of climate disaster, scarcity, and fear of the “other” fundamentally reshape us.

Nonetheless Robert Jensen argues that the book is too “inspiring”, in the sense of unrealistic optimism:

• Robert Jensen, The danger of inspiration: a review of On Fire: The (Burning) Case for a Green New Deal, Resilience, 10 September 2019.

Let me quote him:

On Fire focuses primarily on the climate crisis and the Green New Deal’s vision, which is widely assailed as too radical by the two different kinds of climate-change deniers in the United States today—one that denies the conclusions of climate science and another that denies the implications of that science. The first, based in the Republican Party, is committed to a full-throated defense of our pathological economic system. The second, articulated by the few remaining moderate Republicans and most mainstream Democrats, imagines that market-based tinkering to mitigate the pathology is adequate.

Thankfully, other approaches exist. The most prominent in the United States is the Green New Deal’s call for legislation that recognizes the severity of the ecological crises while advocating for economic equality and social justice. Supporters come from varied backgrounds, but all are happy to critique and modify, or even scrap, capitalism. Avoiding dogmatic slogans or revolutionary rhetoric, Klein writes realistically about moving toward a socialist (or, perhaps, socialist-like) future, using available tools involving “public infrastructure, economic planning, corporate regulation, international trade, consumption, and taxation” to steer out of the existing debacle.

One of the strengths of Klein’s blunt talk about the social and ecological problems in the context of real-world policy proposals is that she speaks of motion forward in a long struggle rather than pretending the Green New Deal is the solution for all our problems. On Fire makes it clear that there are no magic wands to wave, no magic bullets to fire.

The problem is that the Green New Deal does rely on one bit of magical thinking—the techno-optimism that emerges from the modern world’s underlying technological fundamentalism, defined as the faith that the use of evermore advanced technology is always a good thing. Extreme technological fundamentalists argue that any problems caused by the unintended consequences of such technology eventually can be remedied by more technology. (If anyone thinks this definition a caricature, read “An Ecomodernist Manifesto.”)

Klein does not advocate such fundamentalism, but that faith hides just below the surface of the Green New Deal, jumping out in “A Message from the Future with Alexandria Ocasio-Cortez,” which Klein champions in On Fire. Written by U.S. Rep. Ocasio-Cortez (the most prominent legislator advancing the Green New Deal) and Avi Lewis (Klein’s husband and collaborator), the seven-and-a-half minute video elegantly combines political analysis with engaging storytelling and beautiful visuals. But one sentence in that video reveals the fatal flaw of the analysis: “We knew that we needed to save the planet and that we had all the technology to do it [in 2019].”

First, talk of saving the planet is misguided. As many have pointed out in response to that rhetoric, the Earth will continue with or without humans. Charitably, we can interpret that phrase to mean, “reducing the damage that humans do to the ecosphere and creating a livable future for humans.” The problem is, we don’t have all technology to do that, and if we insist that better gadgets can accomplish that, we are guaranteed to fail.

Reasonable people can, and do, disagree about this claim. (For example, “The science is in,” proclaims the Nature Conservancy, and we can have a “future in which catastrophic climate change is kept at bay while we still power our developing world” and “feed 10 billion people.”) But even accepting overly optimistic assessments of renewable energy and energy-saving technologies, we have to face that we don’t have the means to maintain the lifestyle that “A Message from the Future” promises for the United States, let alone the entire world. The problem is not just that the concentration of wealth leads to so much wasteful consumption and wasted resources, but that the infrastructure of our world was built by the dense energy of fossil fuels that renewables cannot replace. Without that dense energy, a smaller human population is going to live in dramatically different fashion.

I don’t know what Klein actually thinks about this, but she does think drastic changes are coming, one way or another.  She writes:

Because while it is true that climate change is a crisis produced by an excess of greenhouse gases in the atmosphere, it is also, in a more profound sense, a crisis produced by an extractive mind-set, by a way of viewing both the natural world and the majority of its inhabitants as resources to use up and then discard. I call it the “gig and dig” economy and firmly believe that we will not emerge from this crisis without a shift in worldview at every level, a transformation to an ethos of care and repair.

Jensen adds:

The domination/subordination dynamic that creates so much suffering within the human family also defines the modern world’s destructive relationship to the larger living world. Throughout the book, Klein presses the importance of telling a new story about all those relationships. Scientific data and policy proposals matter, but they don’t get us far without a story for people to embrace. Klein is right, and On Fire helps us imagine a new story for a human future.

I offer a friendly amendment to the story she is constructing: Our challenge is to highlight not only what we can but also what we cannot accomplish, to build our moral capacity to face a frightening future but continue to fight for what can be achieved, even when we know that won’t be enough.

One story I would tell is of the growing gatherings of people, admittedly small in number today, who take comfort in saying forthrightly what they believe, no matter how painful—people who do not want to suppress their grief, yet do not let their grief overwhelm them.

 


UN Climate Action Summit

4 September, 2019

Christian Williams

Hello, I’m Christian Williams. I study category theory with John Baez at UC Riverside. I’ve written two posts on Azimuth about promising distributed computing endeavors. I believe in the power of applied theory – that’s why I left my life in Texas just to work with John. But lately I’ve begun to wonder if these great ideas will help the world quickly enough.

I want to discuss the big picture, and John has kindly granted me this platform with such a diverse, intelligent, and caring audience. This will be a learning process. All thoughts are welcome. Thanks for reading.

(Greta Thunberg, coming to help us wake up.)

…..
I am the master of my fate,
      I am the captain of my soul.

It’s important to be positive. Humanity now has a global organization called the United Nations. Just a few years ago, members signed an amazing treaty called The Paris Agreement. The parties and signatories:

… basically everyone.

By ratifying this document, the nations of the world agreed to act to keep global warming below 2C above pre-industrial levels – an unparalleled environmental consensus. (On Azimuth, in 2015.) It’s not mandatory, and to me that’s not the point. Together we formally recognize the crisis and express the intent to turn it around.

Except… we really don’t have much time.

We are consistently finding that the ecological crisis is of a greater magnitude and urgency than we thought. The report that finally slapped me awake is the IPCC 2018, which explains the difference between 2C and 1.5C in terms of total devastation and lives, and states definitively:

We must reduce global carbon emissions by 45% by 2030, and by 100% by 2050 to keep within 1.5C. We must have strong negative emissions into the next century. We must go well beyond our agreement, now.

(Blue is essentially, “we might still have a stable society”.)

So… how is our progress on the agreement? That is complicated, and a whole analysis is yet to be done. Here is the UN progress tracker. Here is an NRDC summary. Some countries are taking significant action, but most are not yet doing enough. Let that sink in.

However, the picture is much deeper than only national. Reform sparks at all levels of society: a US politician wanting to leave the agreement emboldened us to form the vast coalition We Are Still In. There are many initiatives like this, hundreds of millions of people rising to the challenge. A small selection:

City and State Levels
Mayors National Climate Action Agenda, U.S. Climate Alliance
Covenant of Mayors for Climate & Energy
International Levels
Reducing emissions from deforestation and forest degradation (REDD)

RE100, Under2 Coalition (The Climate Group)
Everyone Levels
Fridays for Future, Sunrise Movement, Extinction Rebellion
350.org, Climate Reality

Each of us must face this challenge, in their own way.

…..

Responding to the findings of the IPCC, the UN is meeting in New York on September 23, with even higher ambitions and higher stakes: UN Climate Action Summit 2019. The leaders will not sit around and give pep talks. They are developing plans which will describe how to transform society.

On the national level, we must make concrete, compulsory commitments. If they do not soon then we must demand louder, or take their place. The same week as the summit, there will be a global climate strike. It is crucial that all generations join the youth in these demonstrations.

We must change how the world works. We have reached global awareness, and we have reached an ethical imperative.

Please listen to an inspiring activist share her lucid thoughts.

Civilizational Collapse (Part 4)

26 August, 2019

This is part 4 of an intermittent yet always enjoyable series:

Part 1: the rise of the ancient Puebloan civilization in the American Southwest from 10,000 BC to 750 AD.

Part 2: the rise and collapse of the ancient Puebloan civilization from 750 AD to 1350 AD.

Part 3: a simplified model of civilizational collapse.

This time let’s look at the collapse of Greek science and resulting loss of knowledge!

The Antikythera mechanism, found undersea in the Mediterranean, dates to somewhere between 200 and 60 BC. It’s a full-fledged analogue computer! It had at least 30 gears and could predict eclipses, even modelling changes in the Moon’s speed as it orbits the Earth.

What Greek knowledge was lost during the Roman takeover? We’ll never really know.

They killed Archimedes and plundered Syracuse in 212 BC. Ptolemy the Fat—”Physcon” —put an end to science in Alexandria in 154 BC with brutal persecutions.


Contrary to myth, Library of Alexandria was not destroyed once and for all in a single huge fire. The sixth head librarian, Aristarchus of Samothrace, fled when Physcon took over. The library was indeed set on fire in the civil war of 48 BC. But it seems to have lasted until 260 AD, when it basically lost its funding.



When the Romans took over, they dumbed things down. In his marvelous book The Forgotten Revolution, quoted below, Lucio Russo explains the evil effects.


Another example: we have the first four books by Apollonius on conic sections—the more elementary ones—but the other three have been lost.

Archimedes figured out the volume and surface area of a sphere, and the area under a parabola, in a letter to Eratosthenes. He used modern ideas like ‘infinitesimals’! The letter was repeatedly copied and made its way into a 10th-century Byzantine parchment manuscript. But this parchment was written over by Christian monks in the 13th century, and only rediscovered in 1906.


There’s no way to tell how much has been permanently lost. So we’ll never know the full heights of Greek science and mathematics. If we hadn’t found one example of an analogue computer in a shipwreck in 1902, we wouldn’t have guessed they could make those!

And we shouldn’t count on our current knowledge lasting forever, either.

Here are some more things to read. Most of all I recommend this book:

• Lucio Rosso, The Forgotten Revolution: How Science Was Born In 300 BC And Why It Had To Be Reborn, Springer, Berlin, 2013. (First chapter.)

Check out the review by Sandro Graffi (who taught me analysis when I was an undergrad at Princeton):

• Sandro Graffi, La Rivoluzione Dimenticata (The Forgotten Revolution), AMS Notices (May 1998), 601–605.

Only in 1998 did scholars get serious about recovering information from the Archimedes palimpsest using ultraviolet, infrared and other imaging techniques! You can now access it online:

The Archimedes Palimpsest Project.

Here’s a good book on the rediscovery and deciphering of the Archimedes palimpsest, and its mathematical meaning:

• Reviel Netz and William Noel, The Archimedes Codex: Revealing the
Secrets of the World’s Greatest Palimpsest
, Hachette, UK, 2011.

Here’s a video:

• William Noel, Revealing the lost codex of Archimedes, TED, May 29, 2012.

Here are 9 videos on recreating the Antikythera mechanism:

Machining the Antikythera mechanism, Clickspring.

The Wikipedia articles are good too:

• Wikipedia, Antikythera mechanism.

• Wikipedia, Archimedes palimpsest.

• Wikipedia, Library of Alexandria.


The Mathematics of the 21st Century

13 January, 2019

 

Check out the video of my talk, the first in the Applied Category Theory Seminar here at U. C. Riverside. It was nicely edited by Paola Fernandez and uploaded by Joe Moeller.

Abstract. The global warming crisis is part of a bigger transformation in which humanity realizes that the Earth is a finite system and that our population, energy usage, and the like cannot continue to grow exponentially. If civilization survives this transformation, it will affect mathematics—and be affected by it—just as dramatically as the agricultural revolution or industrial revolution. We should get ready!

The slides are rather hard to see in the video, but you can read them here while you watch the talk. Click on links in green for more information!


Stratospheric Controlled Perturbation Experiment

28 November, 2018

I have predicted for a while that as the issue of climate change becomes ever more urgent, the public attitude regarding geoengineering will at some point undergo a phase transition. For a long time it seems the general attitude has been that deliberately interfering with the Earth’s climate on a large scale is “unthinkable”: beyond the pale. I predict that at some point this will flip and the general attitude will become: “how soon can we do it?”

The danger then is that we rush headlong into something untested that we’ll regret.

For a while I’ve been advocating research in geoengineering, to prevent a big mistake like this. Those who consider it “unthinkable” often object to such research, but I think preventing research is not a good long-term policy. I think it actually makes it more likely that at some point, when enough people become really desperate about climate change, we will do something rash without enough information about the possible effects.

Anyway, one can argue about this all day: I can see the arguments for both sides. But here is some news: scientists will soon study how calcium carbonate disperses when you dump a little into the atmosphere:

First sun-dimming experiment will test a way to cool Earth, Nature, 27 November 2018.

It’s a good article—read it! Here’s the key idea:

If all goes as planned, the Harvard team will be the first in the world to move solar geoengineering out of the lab and into the stratosphere, with a project called the Stratospheric Controlled Perturbation Experiment (SCoPEx). The first phase — a US$3-million test involving two flights of a steerable balloon 20 kilometres above the southwest United States — could launch as early as the first half of 2019. Once in place, the experiment would release small plumes of calcium carbonate, each of around 100 grams, roughly equivalent to the amount found in an average bottle of off-the-shelf antacid. The balloon would then turn around to observe how the particles disperse.

The test itself is extremely modest. Dai, whose doctoral work over the past four years has involved building a tabletop device to simulate and measure chemical reactions in the stratosphere in advance of the experiment, does not stress about concerns over such research. “I’m studying a chemical substance,” she says. “It’s not like it’s a nuclear bomb.”

Nevertheless, the experiment will be the first to fly under the banner of solar geoengineering. And so it is under intense scrutiny, including from some environmental groups, who say such efforts are a dangerous distraction from addressing the only permanent solution to climate change: reducing greenhouse-gas emissions. The scientific outcome of SCoPEx doesn’t really matter, says Jim Thomas, co-executive director of the ETC Group, an environmental advocacy organization in Val-David, near Montreal, Canada, that opposes geoengineering: “This is as much an experiment in changing social norms and crossing a line as it is a science experiment.”

Aware of this attention, the team is moving slowly and is working to set up clear oversight for the experiment, in the form of an external advisory committee to review the project. Some say that such a framework, which could pave the way for future experiments, is even more important than the results of this one test. “SCoPEx is the first out of the gate, and it is triggering an important conversation about what independent guidance, advice and oversight should look like,” says Peter Frumhoff, chief climate scientist at the Union of Concerned Scientists in Cambridge, Massachusetts, and a member of an independent panel that has been charged with selecting the head of the advisory committee. “Getting it done right is far more important than getting it done quickly.”

For more on SCoPEx, including a FAQ, go here:

Stratospheric Controlled Perturbation Experiment (SCoPEx), Keutsch Group, Harvard.


Insect Population Crash

25 February, 2018

Scary news from Australia:

• Marc Rigby, Insect population decline leaves Australian scientists scratching for solutions, ABC Far North, 23 February 2018.

I’ll quote the start:

A global crash in insect populations has found its way to Australia, with entomologists across the country reporting lower than average numbers of wild insects.

University of Sydney entomologist Dr. Cameron Webb said researchers around the world widely acknowledge that insect populations are in decline, but are at a loss to determine the cause.

“On one hand it might be the widespread use of insecticides, on the other hand it might be urbanisation and the fact that we’re eliminating some of the plants where it’s really critical that these insects complete their development,” Dr Webb said.

“Add in to the mix climate change and sea level rise and it’s incredibly difficult to predict exactly what it is. It’s left me dumbfounded.”

Entomologist and owner of the Australian Insect Farm, near Innisfail in far north Queensland, Jack Hasenpusch is usually able to collect swarms of wild insects at this time of year.

“I’ve been wondering for the last few years why some of the insects have been dropping off and put it down to lack of rainfall,” Mr. Hasenpusch said.

“This year has really taken the cake with the lack of insects, it’s left me dumbfounded, I can’t figure out what’s going on.”

Mr Hasenpusch said entomologists he had spoken to from Sydney, Brisbane, Perth and even as far away as New Caledonia and Italy all had similar stories.

The Australian Butterfly Sanctuary in Kuranda, west of Cairns, has had difficulty breeding the far north’s iconic Ulysses butterfly for more than two years.

“We’ve had [the problem] checked by scientists, the University of Queensland was involved, Biosecurity Queensland was involved but so far we haven’t found anything unusual in the bodies [of caterpillars] that didn’t survive,” said breeding laboratory supervisor Tina Kupke.

“We’ve had some short successes but always failed in the second generation.”

Ms. Lupke said the problem was not confined to far north Queensland, or even Australia. “Some of our pupae go overseas from some of our breeders here and they’ve all had the same problem,” she said. “And the Melbourne Zoo has been trying for quite a while with the same problems.”

Limited lifecycle prefaces population plummet

Dr. Webb, who primarily researches mosquitoes, said numbers were also in decline across New South Wales this year, which was indicative of the situation in other insect populations.

“We’ve had a really strange summer; it’s been very dry, sometimes it’s been brutally hot but sometimes it’s been cooler than average,” he said.

“Mosquito populations, much like a lot of other insects, rely on the combination of water, humidity and temperature to complete their lifecycle. When you mix around any one of those three components you can really change the local population dynamics.”

All this reminds me of a much more detailed study showing a dramatic insect population decline in Germany over a much longer time period:

• Gretchen Vogel, Where have all the insects gone?, Science, 10 May 2017.

I’ll just quote a bit of this article:

Now, a new set of long-term data is coming to light, this time from a dedicated group of mostly amateur entomologists who have tracked insect abundance at more than 100 nature reserves in western Europe since the 1980s.

Over that time the group, the Krefeld Entomological Society, has seen the yearly insect catches fluctuate, as expected. But in 2013 they spotted something alarming. When they returned to one of their earliest trapping sites from 1989, the total mass of their catch had fallen by nearly 80%. Perhaps it was a particularly bad year, they thought, so they set up the traps again in 2014. The numbers were just as low. Through more direct comparisons, the group—which had preserved thousands of samples over 3 decades—found dramatic declines across more than a dozen other sites.

It also mentions a similar phenomenon in Scotland:

Since 1968, scientists at Rothamsted Research, an agricultural research center in Harpenden, U.K., have operated a system of suction traps—12-meter-long suction tubes pointing skyward. Set up in fields to monitor agricultural pests, the traps capture all manner of insects that happen to fly over them; they are “effectively upside-down Hoovers running 24/7, continually sampling the air for migrating insects,” says James Bell, who heads the Rothamsted Insect Survey.

Between 1970 and 2002, the biomass caught in the traps in southern England did not decline significantly. Catches in southern Scotland, however, declined by more than two-thirds during the same period. Bell notes that overall numbers in Scotland were much higher at the start of the study. “It might be that much of the [insect] abundance in southern England had already been lost” by 1970, he says, after the dramatic postwar changes in agriculture and land use.

Here’s the actual research paper:

• Caspar A. Hallmann, Martin Sorg, Eelke Jongejans, Henk Siepel, Nick Hofland, Heinz Schwan, Werner Stenmans, Andreas Müller, Hubert Sumser, Thomas Hörren, Dave Goulson and Hans de Kroon, More than 75 percent decline over 27 years in total flying insect biomass in protected areas, PLOS One, 18 October 2017.

Abstract. Global declines in insects have sparked wide interest among scientists, politicians, and the general public. Loss of insect diversity and abundance is expected to provoke cascading effects on food webs and to jeopardize ecosystem services. Our understanding of the extent and underlying causes of this decline is based on the abundance of single species or taxonomic groups only, rather than changes in insect biomass which is more relevant for ecological functioning. Here, we used a standardized protocol to measure total insect biomass using Malaise traps, deployed over 27 years in 63 nature protection areas in Germany (96 unique location-year combinations) to infer on the status and trend of local entomofauna. Our analysis estimates a seasonal decline of 76%, and mid-summer decline of 82% in flying insect biomass over the 27 years of study. We show that this decline is apparent regardless of habitat type, while changes in weather, land use, and habitat characteristics cannot explain this overall decline. This yet unrecognized loss of insect biomass must be taken into account in evaluating declines in abundance of species depending on insects as a food source, and ecosystem functioning in the European landscape.

It seems we are heading into strange times.