Saving Climate Data (Part 3)

23 December, 2016

You can back up climate data, but how can anyone be sure your backups are accurate? Let’s suppose the databases you’ve backed up have been deleted, so that there’s no way to directly compare your backup with the original. And to make things really tough, let’s suppose that faked databases are being promoted as competitors with the real ones! What can you do?

One idea is ‘safety in numbers’. If a bunch of backups all match, and they were made independently, it’s less likely that they all suffer from the same errors.

Another is ‘safety in reputation’. If a bunch of backups of climate data are held by academic institutes of climate science, and another are held by climate change denying organizations (conveniently listed here), you probably know which one you trust more. (And this is true even if you’re a climate change denier, though your answer may be different than mine.)

But a third idea is to use a cryptographic hash function. In very simplified terms, this is a method of taking a database and computing a fairly short string from it, called a ‘digest’.

740px-cryptographic_hash_function-svg

A good hash function makes it hard to change the database and get a new one with the same digest. So, if the person owning a database computes and publishes the digest, anyone can check that your backup is correct by computing its digest and comparing it to the original.

It’s not foolproof, but it works well enough to be helpful.

Of course, it only works if we have some trustworthy record of the original digest. But the digest is much smaller than the original database: for example, in the popular method called SHA-256, the digest is 256 bits long. So it’s much easier to make copies of the digest than to back up the original database. These copies should be stored in trustworthy ways—for example, the Internet Archive.

When Sakari Maraanen made a backup of the University of Idaho Gridded Surface Meteorological Data, he asked the custodians of that data to publish a digest, or ‘hash file’. One of them responded:

Sakari and others,

I have made the checksums for the UofI METDATA/gridMET files (1979-2015) as both md5sums and sha256sums.

You can find these hash files here:

https://www.northwestknowledge.net/metdata/data/hash.md5

https://www.northwestknowledge.net/metdata/data/hash.sha256

After you download the files, you can check the sums with:

md5sum -c hash.md5

sha256sum -c hash.sha256

Please let me know if something is not ideal and we’ll fix it!

Thanks for suggesting we do this!

Sakari replied:

Thank you so much! This means everything to public mirroring efforts. If you’d like to help further promoting this Best Practice, consider getting it recognized as a standard when you do online publishing of key public information.

1. Publishing those hashes is already a major improvement on its own.

2. Publishing them on a secure website offers people further guarantees that there has not been any man-in-the-middle.

3. Digitally signing the checksum files offers the best easily achievable guarantees of data integrity by the person(s) who sign the checksum files.

Please consider having these three steps included in your science organisation’s online publishing training and standard Best Practices.

Feel free to forward this message to whom it may concern. Feel free to rephrase as necessary.

As a separate item, public mirroring instructions for how to best download your data and/or public websites would further guarantee permanence of all your uniquely valuable science data and public contributions.

Right now we should get this message viral through the government funded science publishing people. Please approach the key people directly – avoiding the delay of using official channels. We need to have all the uniquely valuable public data mirrored before possible changes in funding.

Again, thank you for your quick response!

There are probably lots of things to be careful about. Here’s one. Maybe you can think of more, and ways to deal with them.

What if the data keeps changing with time? This is especially true of climate records, where new temperatures and so on are added to a database every day, or month, or year. Then I think we need to ‘time-stamp’ everything. The owners of the original database need to keep a list of digests, with the time each one was made. And when you make a copy, you need to record the time it was made.


Azimuth Backup Project (Part 2)

20 December, 2016


azimuth_logo

I want to list some databases that are particularly worth backing up. But to do this, we need to know what’s already been backed up. That’s what this post is about.

Azimuth backups

Here is information as of now (21:45 GMT 20 December 2016). I won’t update this information. For up-to-date information see

Azimuth Backup Project: Issue Tracker.

For up-to-date information on the progress of each of individual databases listed below, click on my summary of what’s happening now.

Here are the databases that we’ve backed up:

• NASA GISTEMP website at http://data.giss.nasa.gov/gistemp/downloaded by Jan and uploaded to Sakari’s datarefuge server.

• NOAA Carbon Dioxide Information Analysis Center (CDIAC) data at ftp.ncdc.noaa.gov/pub/data/paleo/cdiac.ornl.gov-pub — downloaded by Jan and uploaded to Sakari’s datarefuge server.

• NOAA Carbon Tracker website at http://www.esrl.noaa.gov/psd/data/gridded/data.carbontracker.htmldownloaded by Jan, uploaded to Sakari’s datarefuge server.

These are still in progress, but I think we have our hands on the data:

• NOAA Precipitation Frequency Data at http://hdsc.nws.noaa.gov/hdsc/pfds/ and ftp://hdsc.nws.noaa.gov/pubdownloaded by Borislav, not yet uploaded to Sakari’s datarefuge server.

• NOAA Carbon Dioxide Information Analysis Center (CDIAC) website at http://cdiac.ornl.govdownloaded by Jan, uploaded to Sakari’s datarefuge server, but there’s evidence that the process was incomplete.

• NOAA website at https://www.ncdc.noaa.govdownloaded by Jan, who is now attempting to upload it to Sakari’s datarefuge server.

• NOAA National Centers for Environmental Information (NCEI) website at https://www.ncdc.noaa.govdownloaded by Jan, who is now attempting to upload it to Sakari’s datarefuge server, but there are problems.

• Ocean and Atmospheric Research data at ftp.oar.noaa.gov — downloaded by Jan, now attempting to upload it to Sakari’s datarefuge server.

• NOAA NCEP/NCAR Reanalysis ftp site at ftp.cdc.noaa.gov/Datasets/ncep.reanalysis/ — downloaded by Jan, now attempting to upload it to Sakari’s datarefuge server.

I think we’re getting these now, more or less:

• NOAA National Centers for Environmental Information (NCEI) ftp site at ftp://eclipse.ncdc.noaa.gov/pub/ — in the process of being downloaded by Jan, “Very large. May be challenging to manage with my facilities”.

• NASA Planetary Data System (PDS) data at https://pds.nasa.govin the process of being downloaded by Sakari.

• NOAA tides and currents products website at https://tidesandcurrents.noaa.gov/products.html, which includes the sea level trends data at https://tidesandcurrents.noaa.gov/sltrends/sltrends.htmlJan is downloading this.

• NOAA National Centers for Environmental Information (NCEI) satellite datasets website at https://www.ncdc.noaa.gov/data-access/satellite-data/satellite-data-access-datasetsJan is downloading this.

• NASA JASON3 sea level data at http://sealevel.jpl.nasa.gov/missions/jason3/Jan is downloading this.

• U.S. Forest Service Climate Change Atlas website at http://www.fs.fed.us/nrs/atlas/Jan is downloading this.

• NOAA Global Monitoring Division website at http://www.esrl.noaa.gov/gmd/dv/ftpdata.htmlJan is downloading this.

• NOAA Global Monitoring Division ftp data at aftp.cmdl.noaa.gov/ — Jan is downloading this.

• NOAA National Data Buoy Center website at http://www.ndbc.noaa.gov/Jan is downloading this.

• NASA-ESDIS Oak Ridge National Laboratory Distributed Active Archive (DAAC) on Biogeochemical Dynamics at https://daac.ornl.gov/get_data.shtmlJan is downloading this.

• NASA-ESDIS Oak Ridge National Laboratory Distributed Active Archive (DAAC) on Biogeochemical Dynamics website at https://daac.ornl.gov/Jan is downloading this.

Other backups

Other backups are listed at

The Climate Mirror Project, https://climate.daknob.net/.

This nicely provides the sizes of various backups, and other useful information. Some are ‘signed and verified’ with cryptographic keys, but I’m not sure exactly what that means, and the details matter.

About 90 databases are listed here, along with some size information and some information about whether people have already backed them up or are in process:

Gov. Climate Datasets (Archive). (Click on the tiny word “Datasets” at the bottom of the page!)


azimuth_logo


Azimuth Backup Project (Part 1)

16 December, 2016


azimuth_logo

This blog page is to help organize the Azimuth Environmental Data Backup Project, or Azimuth Backup Project for short. This is part of the larger but decentralized, frantic and somewhat disorganized project discussed elsewhere:

Saving Climate Data (Part 2), Azimuth, 15 December 2016.

Here I’ll just say what we’re doing at Azimuth.

Jan Galkowski is a statistician and engineer at Akamai Technologies, a company in Cambridge Massachusetts whose content delivery network is one of the world’s largest distributed computing platforms, responsible for serving at least 15% of all web traffic. He has begun copying some of the publicly accessible US government climate databases. On 11 December he wrote:

John, so I have just started trying to mirror all of CDIAC [the Carbon Dioxide Information Analysis Center]. We’ll see. I’ll put it in a tarball, and then throw it up on Google. It should keep everything intact. Using WinHTTrack. I have coordinated with Eric Holthaus via Twitter, creating, per your suggestion, a new personal account which I am using exclusively to follow the principals.

Once CDIAC is done, and checked over, I’ll move on to other sites.

There are things beyond our control, such as paper records, or records which are online but are not within visibility of the public.

Oh, and I’ve formally requested time off from work for latter half of December so I can work this on vacation. (I have a number of other projects I want to work in parallel, anyway.)

By 14 December he was wanting some more storage space. He asked David Tanzer and me:

Do either of you have a large Google account, or the “unlimited storage” option at Amazon?

I’m using WebDrive, a commercial product. What I’m (now) doing is defining an FTP map at a .gov server, and then a map to my Amazon Cloud Drive. I’m using Windows 7, so these appear as standard drives (or mounts, in *nix terms). I navigate to an appropriate place on the Amazon Drive, and then I proceed to copy from .gov to Amazon.

There is no compression, and, in order to be sure I don’t abuse the .gov site, I’m deliberately passing this over a wireless network in my home, which limits the transfer rate. If necessary, and if the .gov site permits, I could hardwire the workstation to our FIOS router and get appreciably faster transfer. (I often do that for large work files.)

The nice thing is I get to work from home 3 days a week, so I can keep an eye on this. And I’m taking days off just to do this.

I’m thinking about how I might get a second workstation in the act.

The Web sites themselves I’m downloading, as mentioned, using HTTrack. I intended to tarball-up the site structure and then upload to Amazon. I’m still working on CDIAC at ORNL. For future sites, I’m going to try to get HTTrack to mirror directly to Amazon using one of the mounts.

I asked around for more storage space, and my request was kindly answer by Scott Maxwell. Scott lives in Pasadena California and he used to work for NASA: he even had a job driving a Mars rover! He is now a site reliability engineer at Google, and he works on Google Drive. Scott is setting up a 10-terabyte account on Google Drive, which Jan and others will be able to use.

Meanwhile, Jan noticed some interesting technical problems: for some reason WebDrive is barely using the capacity of his network connection, so things are moving much more slowly than they could in theory.

Most recently, Sakari Maaranen offered his assistance. Sakari is a systems architect at Ubisecure, a firm in Finland that specializes in identity management, advanced user authentication, authorization, single sign-on, and federation. He wrote:

I have several terabytes worth in Helsinki (can get more) and a gigabit connection. I registered my offer but they [the DataRefuge people] didn’t reply though. I’m glad if that means you have help already and don’t need a copy in Helsinki.

I replied saying that the absence of a reply probably means that they’re overwhelmed by offers of help and are struggling to figure out exactly what to do. Scott said:

Hey, Sakari! Thank you for the generous offer!

I’m setting these guys up with Google Drive storage, as at least a short-term solution.

IMHO, our first order of business is just to get a copy of the data into a location we control—one that can’t easily be taken away from us. That’s the rationale for Google Drive: it fits into Jan’s existing workflow, so it’s the lowest-friction path to getting a copy of the data that’s under our control.

How about if I propose this: we let Jan go ahead with the plan of backing up the data in Drive. Then I’ll look evaluate moving it from there to whatever other location we come up with. (Or copying instead of moving! More copies is better. :-) How does that sound to you?

I admit I haven’t gotten as far as thinking about Web serving at all—and it’s not my area of expertise anyway. Maybe you’d be kind enough to elaborate on your thoughts there.

Sakari responded with some information about servers. In late January, U. C. Riverside may help me with this—until then they are busy trying to get more storage space, for wholly unrelated reasons. But right now it seems the main job is to identify important data and get it under our control.

There are a lot of ways you could help.

Computer skills. Personally I’m not much use with anything technical about computers, but the rest of the Azimuth Data Backup gang probably has technical questions that some of you out there could answer… so, I encourage discussion of those questions. (Clearly some discussions are best done privately, and at some point we may encounter unfriendly forces, but this is a good place for roaming experts to answer questions.)

Security. Having a backup of climate data is not very useful if there are also fake databases floating around and you can’t prove yours is authentic. How can we create a kind of digital certificate that our database matches what was on a specific website at a specific time? We should do this if someone here has the expertise.

Money. If we wind up wanting to set up a permanent database with a nice front end, accessible from the web, we may want money. We could do a Kickstarter campaign. People may be more interested in giving money now than later, unless the political situation immediately gets worse after January 20th.

Strategy. We should talk a bit about what to do next, though too much talk tends to prevent action. Eventually, if all goes well, our homegrown effort will be overshadowed by others, at least in sheer quantity. About 3 hours ago Eric Holthaus tweeted “we just got a donation of several petabytes”. If it becomes clear that others are putting together huge, secure databases with nice front ends, we can either quit or—better—cooperate with them, and specialize on something we’re good at and enjoy.


Saving Climate Data (Part 2)

16 December, 2016

I want to get you involved in the Azimuth Environmental Data Backup Project, so click on that for more. But first some background.

A few days ago, many scientists, librarians, archivists, computer geeks and environmental activists started to make backups of US government environmental databases. We’re trying to beat the January 20th deadline just in case.

Backing up data is always a good thing, so there’s no point in arguing about politics or the likelihood that these backups are needed. The present situation is just a nice reason to hurry up and do some things we should have been doing anyway.

As of 2 days ago the story looked like this:

Saving climate data (Part 1), Azimuth, 13 December 2016.

A lot has happened since then, but much more needs to be done. Right now you can see a list of 90 databases to be backed up here:

Gov. Climate Datasets (Archive). (Click on the tiny word “Datasets” at the bottom of the page!)

Despite the word ‘climate’, the scope includes other environmental databases, and rightly so. Here is a list of databases that have been backed up:

The Climate Mirror Project.

By going here and clicking “Start Here to Help”:

Climate Mirror.

you can nominate a dataset for rescue, claim a dataset to rescue, let everyone know about a data rescue event, or help in some other way (which you must specify). There’s also other useful information on this page, which was set up by Nick Santos.

The overall effort is being organized by the Penn Program in the Environmental Humanities, or ‘PPEHLab’ for short, headed by Bethany Wiggin. If you want to know what’s going on, it helps to look at their blog:

DataRescuePenn.

However, the people organizing the project are currently overwhelmed with offers of help! People worldwide are proceeding to take action in a decentralzed way! So, everything is a bit chaotic, and nobody has an overall view of what’s going on.

I can’t overstate this: if you think that ‘they’ have a plan and ‘they’ know what’s going on, you’re wrong. ‘They’ is us. Act accordingly.

Here’s a list of news articles, a list of ‘data rescue events’ where people get together with lots of computers and do stuff, and a bit about archives and archivists.

News

Here are some things to read:

• Jason Koebler, Researchers are preparing for Trump to delete government science from the web, Vice, 13 December 2016.

• Brady Dennis, Scientists frantically copying U.S. climate data, fearing it might vanish under Trump, Washington Post, 13 December, 2016. (Also at the Chicago Tribune.)

• Eric Holthaus, Why I’m trying to preserve federal climate data before Trump takes office, Washington Post, 13 December 2016.

• Nicole Mortillaro, U of T heads ‘guerrilla archiving event’ to preserve climate data ahead of Trump presidency, CBC News, 14 December 2016.

• Audie Kornish and Eric Holthaus, Scientists race to preserve climate change data before Trump takes office, All Things Considered, National Public Radio, 14 December 2016.

Data rescue events

There’s one in Toronto:

Guerrilla archiving event, 10 am – 4 pm EST, Saturday 17 December 2016. Location: Bissell Building, 4th Floor, 140 St. George St. University of Toronto.

There will be one in Philadelphia:

DataRescuePenn Data Harvesting, Friday–Saturday 13–14 January 2017. Location: not determined yet, probably somewhere at the University of Pennsylvania, Philadelphia.

I hear there will also be events in New York City and Los Angeles, but I don’t know details. If you do, please tell me!

Archives and archivists

Today I helped catalyze a phone conversation between Bethany Wiggin, who heads the PPEHLab, and Nancy Beaumont, head of the Society of American Archivists. Digital archivists have a lot of expertise in saving information, so their skills are crucial here. Big wads of disorganized data are not very useful.

In this conversation I learned that some people are already in contact with the Internet Archive. This archive always tries to save US government websites and databases at the end of each presidential term. Their efforts are not limited to environmental data, and they save not only webpages but entire databases, e.g. data in ftp sites. You can nominate sites to be saved here:

• Internet Archive, End of Presidential Term Harvest 2016.

For more details read this:

• Internet Archive blog, Preserving U.S. Government Websites and Data as the Obama Term Ends, 15 December 2016.


Under2 Coalition

24 November, 2016

I’ve been thinking hard about climate change since at least 2010. That’s why I started this blog. But the last couple years I’ve focused on basic research in network theory as a preliminary step toward green mathematics. Basic research is what I’m best at, and there are plenty of people working on the more immediate, more urgent aspects of climate change.

Indeed, after the Paris Agreement, I started hoping that politicians were taking this issue seriously and that we’d ultimately deal with it—even though I knew this agreement was not itself enough to keep warming below 2° C:

There is a troubling paradox at the heart of climate policy. On the one hand, nobody can doubt the historic success of the Paris Agreement. On the other hand, everybody willing to look can see the impact of our changing climate. People already face rising seas, expanding desertification and coastal erosion. They take little comfort from agreements to adopt mitigation measures and finance adaptation in the future. They need action today.

That is why the Emissions Gap Report tracks our progress in restricting global warming to 1.5 – 2 degrees Celsius above pre-industrial levels by the end of this century. This year’s data shows that overall emissions are still rising, but more slowly, and in the case of carbon dioxide, hardly at all. The report foresees further reductions in the short term and increased ambition in the medium term. Make no mistake; the Paris Agreement will slow climate change. The recent Kigali Amendment to the Montreal Protocol will do the same.

But not enough: not nearly enough and not fast enough. This report estimates we are actually on track for global warming of up to 3.4 degrees Celsius. Current commitments will reduce emissions by no more than a third of the levels required by 2030 to avert disaster. The Kigali Amendment will take off 0.5 degrees Celsius, although not until well after 2030. Action on short-lived climate pollutants, such as black carbon, can take off a further 0.5 degrees Celsius. This means we need to find another one degree from somewhere to meet the stronger, and safer, target of 1.5 degrees Celsius warming.

So, we must take urgent action. If we don’t, we will mourn the loss of biodiversity and natural resources. We will regret the economic fallout. Most of all, we will grieve over the avoidable human tragedy; the growing numbers of climate refugees hit by hunger, poverty, illness and conflict will be a constant reminder of our failure to deliver.

That’s from an annual report put out by the United Nations Environment Programme, or UNEP:

• United Nations Environment Programme, The Emissions Gap Report 2016.

As this report makes clear, we can bridge the gap and keep global warming below 2° C, if we work very hard.

But my limited optimism was shaken by the US presidential election, and especially by the choice of Myron Ebell to head the ‘transition team’ for the Environmental Protection Agency. For the US government to dismantle the Clean Power Plan and abandon the Paris Agreement would seriously threaten the fight against climate change.

Luckily, people already recognize that even with the Paris Agreement, a lot of work must happen at the ‘subnational’ level. This work will go on even if the US federal government gives up. So I want to learn more about it, and get involved somehow.

This is where the Under2 Coalition comes in.

The Under2 Coalition

California, Connecticut, Minnesota, New Hampshire, New York, Oregon, Rhode Island, Vermont and Washington have signed onto a spinoff of the Paris Climate Agreement. It’s called the Under2 Memorandum of Understanding, or Under2 MOU for short.

“Under 2” stands for two goals:

• under 2 degrees Celsius of global warming, and
• under 2 tonnes of carbon dioxide emitted per person per year.

These states have agreed to cut greenhouse gas emissions to 80-95% below 1990 levels by 2050. They’ve also agreed to share technology and scientific research, expand use of zero-emission vehicles, etc., etc.

And it’s not just US states that are involved in this! A total of 165 jurisdictions in 33 countries and six continents have signed or endorsed the Under2 MOU. Together, they form the Under2 Coalition. They represent more than 1.08 billion people and $25.7 trillion in GDP, more than a third of the global economy:

Under2 Coalition.

I’ll list the members, starting with ones near the US. If you go to the link you can find out exactly what each of these ‘sub-national entities’ are promising to do. In a future post, I’ll say more about the details, since I want Riverside to join this coalition. Jim Stuttard has already started a page about a city in the UK which is not a member of the Under2 Coalition, but has done a lot of work to figure out how to cut carbon emissions:

• Azimuth Wiki, Birmingham Green Commission.

This sort of information will be useful for other cities.

UNITED STATES

Austin
California
Connecticut
Los Angeles
Massachusetts
Minnesota
New Hampshire
New York City
New York State
Oakland City
Oregon
Portland City
Rhode Island
Sacramento
San Francisco
Seattle
Vermont
Washington

CANADA

British Columbia
Northwest Territories
Ontario
Québec
Vancouver City

MEXICO

Baja California
Chiapas
Hidalgo
Jalisco
Mexico City
Mexico State
Michoacán
Quintana Roo
Tabasco
Yucatán

BRAZIL

Acre
Amazonas
Mato Grosso
Pernambuco
Rondônia
São Paulo City
São Paulo State
Tocantins

CHILE

Santiago City

COLOMBIA

Guainía
Guaviare

PERU

Loreto
San Martín
Ucayali

AUSTRIA

Lower Austria

FRANCE

Alsace
Aquitaine
Auvergne-Rhône-Alpes
Bas-Rhin
Midi-Pyrénées
Pays de la Loire

GERMANY

Baden-Württemberg
Bavaria
Hesse
North Rhine-Westphalia
Schleswig-Holstein
Thuringia

HUNGARY

Budapest

ITALY

Abruzzo
Basilicata
Emilia-Romagna
Lombardy
Piedmont
Sardinia
Veneto

THE NETHERLANDS

Drenthe
North Brabant
North Holland
South Holland

PORTUGAL

Azores
Madeira

SPAIN

Andalusia
Basque Country
Catalonia
Navarra

SWEDEN

Jämtland Härjedalen

SWITZERLAND

Basel-Landschaft
Basel-Stadt

UNITED KINGDOM

Bristol
Greater Manchester
Scotland
Wales

AUSTRALIA

Australian Capital Territory (ACT)
South Australia

CHINA

Alliance of Peaking Pioneer Cities (represents 23 cities)
Jiangsu Province
Sichuan
Zhenjiang City

INDIA

Telangana

INDONESIA

East Kalimantan
South Sumatra
West Kalimantan

JAPAN

Gifu

NEPAL

Kathmandu Valley

KENYA

Laikipia County

IVORY COAST

Assemblée des Régions de Côte d’Ivoire (represents 33 subnationals)

NIGERIA

Cross River State

MOZAMBIQUE

Nampula

SENEGAL

Guédiawaye


Ken Caldeira on What To Do

25 January, 2016

Famous climate scientist Ken Caldeira has a new article out:

• Ken Caldeira, Stop Emissions!, Technology Review, January/February 2016, 41–43.

Let me quote a bit:

Many years ago, I protested at the gates of a nuclear power plant. For a long time, I believed it would be easy to get energy from biomass, wind, and solar. Small is beautiful. Distributed power, not centralized.

I wish I could still believe that.

My thinking changed when I worked with Marty Hoffert of New York University on research that was first published in Nature in 1998. It was the first peer-reviewed study that examined the amount of near-zero-emission energy we would need in order to solve the climate problem. Unfortunately, our conclusions still hold. We need massive deployment of affordable and dependable near-zero-emission energy, and we need a major research and development program to develop better energy and transportation systems.

It’s true that wind and solar power have been getting much more attractive in recent years. Both have gotten significantly cheaper. Even so, neither wind nor solar is dependable enough, and batteries do not yet exist that can store enough energy at affordable prices to get a modern industrial society through those times when the wind is not blowing and the sun is not shining.

Recent analyses suggest that wind and solar power, connected by a continental-scale electric grid and using natural-gas power plants to provide backup, could reduce greenhouse-gas emissions from electricity production by about two-thirds. But generating electricity is responsible for only about one-third of total global carbon dioxide emissions, which are increasing by more than 2 percent a year. So even if we had this better electric sector tomorrow, within a decade or two emissions would be back where they are today.

We need to bring much, much more to bear on the climate problem. It can’t be solved unless it is addressed as seriously as we address national security. The politicians who go to the Paris Climate Conference are making commitments that fall far short of what would be needed to substantially reduce climate risk.

Daunting math

Four weeks ago, a hurricane-strength cyclone smashed into Yemen, in the Arabian Peninsula, for the first time in recorded history. Also this fall, a hurricane with the most powerful winds ever measured slammed into the Pacific coast of Mexico.

Unusually intense storms such as these are a predicted consequence of global warming, as are longer heat waves and droughts and many other negative weather-related events that we can expect to become more commonplace. Already, in the middle latitudes of the Northern Hemisphere, average temperatures are increasing at a rate that is equivalent to moving south about 10 meters (30 feet) each day. This rate is about 100 times faster than most climate change that we can observe in the geologic record, and it gravely threatens biodiversity in many parts of the world. We are already losing about two coral reefs each week, largely as a direct consequence of our greenhouse-gas emissions.

Recently, my colleagues and I studied what will happen in the long term if we continue pulling fossil carbon out of the ground and releasing it into the atmosphere. We found that it would take many thousands of years for the planet to recover from this insult. If we burn all available fossil-fuel resources and dump the resulting carbon dioxide waste in the sky, we can expect global average temperatures to be 9 °C (15 °F) warmer than today even 10,000 years into the future. We can expect sea levels to be about 60 meters (200 feet) higher than today. In much of the tropics, it is possible that mammals (including us) would not be able to survive outdoors in the daytime heat. Thus, it is essential to our long-term well-being that fossil-fuel carbon does not go into our atmosphere.

If we want to reduce the threat of climate change in the near future, there are actions to take now: reduce emissions of short-lived pollutants such as black carbon, cut emissions of methane from natural-gas fields and landfills, and so on. We need to slow and then reverse deforestation, adopt electric cars, and build solar, wind, and nuclear plants.

But while existing technologies can start us down the path, they can’t get us to our goal. Most analysts believe we should decarbonize electricity generation and use electricity for transportation, industry, and even home heating. (Using electricity for heating is wildly inefficient, but there may be no better solution in a carbon-constrained world.) This would require a system of electricity generation several times larger than the one we have now. Can we really use existing technology to scale up our system so dramatically while markedly reducing emissions from that sector?

Solar power is the only energy source that we know can power civilization indefinitely. Unfortunately, we do not have global-scale electricity grids that could wheel solar energy from day to night. At the scale of the regional electric grid, we do not have batteries that can balance daytime electricity generation with nighttime demand.

We should do what we know how to do. But all the while, we need to be thinking about what we don’t know how to do. We need to find better ways to generate, store, and transmit electricity. We also need better zero-carbon fuels for the parts of the economy that can’t be electrified. And most important, perhaps, we need better ways of using energy.

Energy is a means, not an end. We don’t want energy so much as we want what it makes possible: transportation, entertainment, shelter, and nutrition. Given United Nations estimates that the world will have at least 11 billion people by the end of this century (50 percent more than today), and given that we can expect developing economies to grow rapidly, demand for services that require energy is likely to increase by a factor of 10 or more over the next century. If we want to stabilize the climate, we need to reduce total emissions from today’s level by a factor of 10. Put another way, if we want to destroy neither our environment nor our economy, we need to reduce the emissions per energy service provided by a factor of 100. This requires something of an energy miracle.

The essay continues.

Near the end, he writes “despite all these reasons for despair, I’m hopeful”. He is hopeful that a collective change of heart is underway that will enable humanity to solve this problem. But he doesn’t claim to know any workable solution to the problem. In fact, he mostly list reasons why various possible solutions won’t be enough.


Good News (Part 2)

25 December, 2015

 

When I visited Cambodia I went to Kompong Phluk, a village where all the houses are on stilts, and everyone knows how to swim. The villagers raise fish in the Tonlé Sap, which is the largest freshwater lake in southeast Asia. During the dry season, from November to May, this lake drains into the Mekong River near Phnom Penh. But during the monsoons, water flows back from the Mekong into the lake, and it grows six-fold in area! We took a boat ride down this muddy river into the Tonlé Sap and saw the fish farms.

In 2008, a Canadian student named Christopher Charles was working in rural Cambodia. He was living in a house on stilts. He had no electricity or running water, but lots time to sit around and think.

He started thinking about anemia.

Anemia is often caused by an iron deficiency. It makes you tired and weak. You have trouble thinking clearly. Almost half of Cambodia’s population suffers from this disease! In fact, over 3.5 billion people on our planet have anemia, and the World Bank estimates that it’s a $50 billion drain on the global GDP.

You can cure anemia with iron supplements—but they taste bad, and they often cause stomach pains, constipation, and even more disgusting problems.

So Charles had another idea: give villagers little blocks of iron to drop into their cooking pots. The iron gets released slowly as the water boils.

But at first, people hated them. They thought the iron blocks where ugly. They thought the iron blocks would scratch their pots. So they turned them into doorstops.

He kept trying. He needed a second idea: one that could make the first idea work.

He realized that in rural Cambodia almost everything revolves around fish. Fish from the Tonlé Sap provide Cambodians with 60% of their protein intake. People earn lots of their money fishing, they’re important in Khmer folklore. Even their currency—the riel—is named after a fish!

So, he made iron into “lucky fish” , shown here:

Now people are happy to put one into the pot when cooking.

One of those who has been using the fish is Sot Mot, a 60-year-old grandmother who lives just outside Phnom Penh. She drops the fish into boiling water as she chops up garlic, ginger and lemongrass for Khmer chicken soup. “Before, I felt tired and lazy and my chest shook when I was tired,” she says. “But after I use the fish, I have strength and energy to work and I sleep well, too.”

One of her grand-daughters seems to be improving, too. “Before, when I went to school I felt tired, and I didn’t do well at math, maybe the sixth in the class,” says 15-year-old Danai. “Now,” she says proudly, “I’m No. 1.”

Of course, this idea needs to be tested with scientific studies. And here’s one such study:

• Christopher V. Charles et al, Iron-deficiency anaemia in rural Cambodia: community trial of a novel iron supplementation technique, The European Journal of Public Health, 28 January 2010.

More studies are coming up.

No matter what the result finally is, it shows that paying attention to local culture can work wonders when trying to help people.

Large parts of this story are paraphrased from the following radio show, which is definitely worth listening to:

• Michael Sullivan, In Cambodia, ‘lucky’ iron fish in the pot could help fight anemia, Morning Edition, National Public Radio, 25 December 2015.