Bridging the Greenhouse-Gas Emissions Gap

28 April, 2013

I could use some help here, finding organizations that can help cut greenhouse gas emissions. I’ll explain what I mean in a minute. But the big question is:

How can we bridge the gap between what we are doing about global warming and what we should be doing?

That’s what this paper is about:

• Kornelis Blok, Niklas Höhne, Kees van der Leun and Nicholas Harrison, Bridging the greenhouse-gas emissions gap, Nature Climate Change 2 (2012), 471-474.

According to the United Nations Environment Programme, we need to cut CO2 emissions by about 12 gigatonnes/year by 2020 to hold global warming to 2 °C.

After the UN climate conference in Copenhagen, many countries made pledges to reduce CO2 emissions. But by 2020 these pledges will cut emissions by at most 6 gigatonnes/year. Even worse, a lot of these pledges are contingent on other people meeting other pledges, and so on… so the confirmed value of all these pledges is only 3 gigatonnes/year.

The authors list 21 things that cities, large companies and individual citizens can do, which they claim will cut greenhouse gas emissions by the equivalent of 10 gigatonnes/year of CO2 by 2020. For each initiative on their list, they claim:

(1) there is a concrete starting position from which a significant up-scaling until the year 2020 is possible;

(2) there are significant additional benefits besides a reduction of greenhouse-gas emissions, so people can be driven by self-interest or internal motivation, not external pressure;

(3) there is an organization or combination of organizations that can lead the initiative;

(4) the initiative has the potential to reach an emission reduction by about 0.5 Gt CO2e by 2020.

21 Initiatives

Now I want to quote the paper and list the 21 initiatives. And here’s where I could use your help! For each of these, can you point me to one or more organizations that are in a good position to lead the initiative?

Some are already listed, but even for these I bet there are other good answers. I want to compile a list, and then start exploring what’s being done, and what needs to be done.

By the way, even if the UN estimate of the greenhouse-emissions gap is wrong, and even if all the numbers I’m about to quote are wrong, most of them are probably the right order of magnitude—and that’s all we need to get a sense of what needs to be done, and how we can do it.

Companies

1. Top 1,000 companies’ emission reductions. Many of the 1,000 largest greenhouse-gas-emitting companies already have greenhouse-gas emission-reduction goals to decrease their energy use and increase their long-term competitiveness, as well as to demonstrate their corporate social responsibility. An association such as the World Business Council for Sustainable Development could lead 30% of the top 1,000 companies to reduce energy-related emissions 10% below business as usual by 2020 and all companies to reduce their non-carbon dioxide greenhouse-gas emissions by 50%. Impact in 2020: up to 0.7 Gt CO2e.

2. Supply-chain emission reductions. Several companies already have social and environmental requirements for their suppliers, which are driven by increased competitiveness, corporate social responsibility and the ability to be a front-runner. An organization such as the Consumer Goods Forum could stimulate 30% of companies to require their supply chains to reduce emissions 10% below business as usual by 2020. Impact in 2020: up to 0.2 Gt CO2e.

3. Green financial institutions. More than 200 financial organizations are already members of the finance initiative of the United Nations Environment Programme (UNEP-FI). They are committed to environmental goals owing to corporate social responsibility, to gain investor certainty and to be placed well in emerging markets. UNEP-FI could lead the 20 largest banks to reduce the carbon footprint of 10% of their assets by 80%. Impact in 2020: up to 0.4 Gt of their assets by 80%. Impact in 2020: up to 0.4 Gt CO2e.

4. Voluntary-offset companies. Many companies are already offsetting their greenhouse-gas emissions, mostly without explicit external pressure. A coalition between an organization with convening power, for example UNEP, and offset providers could motivate 20% of the companies in the light industry and commercial sector to calculate their greenhouse-gas emissions, apply emission-reduction measures and offset the remaining emissions (retiring the purchased credits). It is ensured that offset projects really reduce emissions by using the ‘gold standard’ for offset projects or another comparable mechanism. Governments could provide incentives by giving tax credits for offsetting, similar to those commonly given for charitable donations. Impact by 2020: up to 2.0 Gt CO2e.

Other actors

5. Voluntary-offset consumers. A growing number of individuals (especially with high income) already offset their greenhouse-gas emissions, mostly for flights, but also through carbon-neutral products. Environmental NGOs could motivate 10% of the 20% of richest individuals to offset their personal emissions from electricity use, heating and transport at cost to them of around US$200 per year. Impact in 2020: up to 1.6 Gt CO2e.

6. Major cities initiative. Major cities are large emitters of greenhouse gases and many have greenhouse-gas reduction targets. Cities are intrinsically highly motivated to act so as to improve local air quality, attractiveness and local job creation. Groups like the C40 Cities Climate Leadership Group and ICLEI — Local Governments for Sustainability could lead the 40 cities in C40 or an equivalent sample to reduce emissions 20% below business as usual by 2020, building on the thousands of emission-reduction activities already implemented by the C40 cities. Impact in 2020: up to 0.7 Gt CO2e.

7. Subnational governments. Several states in the United States and provinces in Canada have already introduced support mechanisms for renewable energy, emission-trading schemes, carbon taxes and industry regulation. As a result, they expect an increase in local competitiveness, jobs and energy security. Following the example set by states such as California, these ambitious US states and Canadian provinces could accept an emission-reduction target of 15–20% below business as usual by 2020, as some states already have. Impact in 2020: up to 0.6 Gt CO2e.

Energy efficiency

8. Building heating and cooling. New buildings, and increasingly existing buildings, are designed to be extremely energy efficient to realize net savings and increase comfort. The UN Secretary General’s Sustainable Energy for All Initiative could bring together the relevant players to realize 30% of the full reduction potential for 2020. Impact in 2020: up to 0.6 Gt CO2e.

9. Ban of incandescent lamps. Many countries already have phase-out schedules for incandescent lamps as it provides net savings in the long term. The en.lighten initiative of UNEP and the Global Environment Facility already has a target to globally ban incandescent lamps by 2016. Impact in 2020: up to 0.2 Gt CO2e.

10. Electric appliances. Many international labelling schemes and standards already exist for energy efficiency of appliances, as efficient appliances usually give net savings in the long term. The Collaborative Labeling and Appliance Standards Program or the Super-efficient Equipment and Appliance Deployment Initiative could drive use of the most energy-efficient appliances on the market. Impact in 2020: up to 0.6 Gt CO2e.

11. Cars and trucks. All car and truck manufacturers put emphasis on developing vehicles that are more efficient. This fosters innovation and increases their long-term competitive position. The emissions of new cars in Europe fell by almost 20% in the past decade. A coalition of manufacturers and NGOs joined by the UNEP Partnership for Clean Fuels and Vehicles could agree to save one additional liter per 100 km globally by 2020 for cars, and equivalent reductions for trucks. Impact in 2020: up to 0.7 Gt CO2e.

Energy supply

12. Boost solar photovoltaic energy. Prices of solar photovoltaic systems have come down rapidly in recent years, and installed capacity has increased much faster than expected. It created a new industry, an export market and local value added through, for example, roof installations. A coalition of progressive governments and producers could remove barriers by introducing good grid access and net metering rules, paving the way to add another 1,600 GW by 2020 (growth consistent with recent years). Impact in 2020: up to 1.4 Gt CO2e.

13. Wind energy. Cost levels for wind energy have come down dramatically, making wind economically competitive with fossil-fuel-based power generation in many cases. The Global Wind Energy Council could foster the global introduction of arrangements that lead to risk reduction for investments in wind energy, with, for example, grid access and guarantees. This could lead to an installation of 1,070 GW by 2020, which is 650 GW over a reference scenario. Impact in 2020: up to 1.2 Gt CO2e.

14. Access to energy through low-emission options. Strong calls and actions are already underway to provide electricity access to 1.4 billion people who are at present without and fulfill development goals. The UN Secretary General’s Sustainable Energy for All Initiative could ensure that all people without access to electricity get access through low-emission options. Impact in 2020: up to 0.4 Gt CO2e.

15. Phasing out subsidies for fossil fuels. This highly recognized option to reduce emissions would improve investment in clean energy, provide other environmental, health and security benefits, and generate income. The International Energy Agency could work with countries to phase out half of all fossil-fuel subsidies. Impact in 2020: up to 0.9 Gt CO2e.

Special sectors

16. International aviation and maritime transport. The aviation and shipping industries are seriously considering efficiency measures and biofuels to increase their competitive advantage. Leading aircraft and ship manufacturers could agree to design their vehicles to capture half of the technical mitigation potential. Impact in 2020: up to 0.2 Gt CO2e.

17. Fluorinated gases (hydrofluorocarbons, perflourocarbons, SF6). Recent industry-led initiatives are already underway to reduce emissions of these gases originating from refrigeration, air-conditioning and industrial processes. Industry associations, such as Refrigerants, Naturally!, could work towards meeting half of the technical mitigation potential. Impact in 2020: up to 0.3 Gt CO2e.

18. Reduce deforestation. Some countries have already shown that it is strongly possible to reduce deforestation with an integrated approach that eliminates the drivers of deforestation. This has benefits for local air pollution and biodiversity, and can support the local population. Led by an individual with convening power, for example, the United Kingdom’s Prince of Wales or the UN Secretary General, such approaches could be rolled out to all the major countries with high deforestation emissions, halving global deforestation by 2020. Impact in 2020: up to 1.8 Gt CO2e.

19. Agriculture. Options to reduce emissions from agriculture often increase efficiency. The International Federation of Agricultural Producers could help to realize 30% of the technical mitigation potential. (Well, at least it could before it collapsed, after this paper was written.) Impact in 2020: up to 0.8 Gt CO2e.

Air pollutants

20. Enhanced reduction of air pollutants. Reduction of classic air pollutants including black carbon has been pursued for years owing to positive impacts on health and local air quality. UNEP’s Climate and Clean Air Coalition To Reduce Short-Lived Climate Pollutants already has significant political momentum and could realize half of the technical mitigation potential. Impact in 2020: a reduction in radiative forcing impact equivalent to an emission reduction of greenhouse gases in the order of 1 Gt CO2e, but outside of the definition of the gap.

21. Efficient cook-stoves. Cooking in rural areas is a source of carbon dioxide emissions. Furthermore, there are emissions of black carbon, which also leads to global warming. Replacing these cook-stoves would also significantly increase local air quality and reduce pressure on forests from fuel-wood demand. A global development organization such as the UN Development Programme could take the lead in scaling-up the many already existing programs to eventually replace half of the existing cook-stoves. Impact in 2020: a reduction in radiative forcing impact equivalent to an emission reduction of greenhouse gases of up to 0.6 Gt CO2e, included in the effect of the above initiative and outside of the definition of the gap.

For more

For more, see the supplementary materials to this paper, and also:

• Niklas Höhne, Wedging the gap: 21 initiatives to bridge the greenhouse gas emissions gap.

The size of the emissions gap was calculated here:

The Emissions Gap Report 2012, United Nations Environment Programme (UNEP).

If you’re in a rush, just read the executive summary.


Meta-Rationality

15 March, 2013

On his blog, Eli Dourado writes something that’s very relevant to the global warming debate, and indeed most other debates.

He’s talking about Paul Krugman, but I think with small modifications we could substitute the name of almost any intelligent pundit. I don’t care about Krugman here, I care about the general issue:

Nobel laureate, Princeton economics professor, and New York Times columnist Paul Krugman is a brilliant man. I am not so brilliant. So when Krugman makes strident claims about macroeconomics, a complex subject on which he has significantly more expertise than I do, should I just accept them? How should we evaluate the claims of people much smarter than ourselves?

A starting point for thinking about this question is the work of another Nobelist, Robert Aumann. In 1976, Aumann showed that under certain strong assumptions, disagreement on questions of fact is irrational. Suppose that Krugman and I have read all the same papers about macroeconomics, and we have access to all the same macroeconomic data. Suppose further that we agree that Krugman is smarter than I am. All it should take, according to Aumann, for our beliefs to converge is for us to exchange our views. If we have common “priors” and we are mutually aware of each others’ views, then if we do not agree ex post, at least one of us is being irrational.

It seems natural to conclude, given these facts, that if Krugman and I disagree, the fault lies with me. After all, he is much smarter than I am, so shouldn’t I converge much more to his view than he does to mine?

Not necessarily. One problem is that if I change my belief to match Krugman’s, I would still disagree with a lot of really smart people, including many people as smart as or possibly even smarter than Krugman. These people have read the same macroeconomics literature that Krugman and I have, and they have access to the same data. So the fact that they all disagree with each other on some margin suggests that very few of them behave according to the theory of disagreement. There must be some systematic problem with the beliefs of macroeconomists.

In their paper on disagreement, Tyler Cowen and Robin Hanson grapple with the problem of self-deception. Self-favoring priors, they note, can help to serve other functions besides arriving at the truth. People who “irrationally” believe in themselves are often more successful than those who do not. Because pursuit of the truth is often irrelevant in evolutionary competition, humans have an evolved tendency to hold self-favoring priors and self-deceive about the existence of these priors in ourselves, even though we frequently observe them in others.

Self-deception is in some ways a more serious problem than mere lack of intelligence. It is embarrassing to be caught in a logical contradiction, as a stupid person might be, because it is often impossible to deny. But when accused of disagreeing due to a self-favoring prior, such as having an inflated opinion of one’s own judgment, people can and do simply deny the accusation.

How can we best cope with the problem of self-deception? Cowen and Hanson argue that we should be on the lookout for people who are “meta-rational,” honest truth-seekers who choose opinions as if they understand the problem of disagreement and self-deception. According to the theory of disagreement, meta-rational people will not have disagreements among themselves caused by faith in their own superior knowledge or reasoning ability. The fact that disagreement remains widespread suggests that most people are not meta-rational, or—what seems less likely—that meta-rational people cannot distinguish one another.

We can try to identify meta-rational people through their cognitive and conversational styles. Someone who is really seeking the truth should be eager to collect new information through listening rather than speaking, construe opposing perspectives in their most favorable light, and offer information of which the other parties are not aware, instead of simply repeating arguments the other side has already heard.

All this seems obvious to me, but it’s discussed much too rarely. Maybe we can figure out ways to encourage this virtue that Cohen and Hanson call ‘meta-rationality’? There are already too many mechanisms that reward people for aggressively arguing for fixed positions. If Krugman really were ‘meta-rational’, he might still have his Nobel Prize, but he probably wouldn’t be a popular newspaper columnist.

The Azimuth Project, and this blog, are already doing a lot of things to prevent people from getting locked into fixed positions and filtering out evidence that goes against their views. Most crucial seems to be the policy of forbidding insults, bullying, and overly repetitive restatement of the same views. These behaviors increase what I call the ‘heat’ in a discussion, and I’ve decided that, all things considered, it’s best to keep the heat fairly low.

Heat attracts many people, so I’m sure we could get a lot more people to read this blog by turning up the heat. A little heat is a good thing, because it engages people’s energy. But heat also makes it harder for people to change their minds. When the heat gets too high, changing ones mind is perceived as a defeat, to be avoided at all costs. Even worse, people form ‘tribes’ who back each other up in every argument, regardless of the topic. Rationality goes out the window. And meta-rationality? Forget it!

Some Questions

Dourado talks about ways to “identify meta-rational people.” This is very attractive, but I think it’s better to talk about “identifying when people are behaving meta-rationally”. I don’t think we should spend too much of our time looking around for paragons of meta-rationality. First of all, nobody is perfect. Second of all, as soon as someone gets a big reputation for rationality, meta-rationality, or any other virtue, it seems they develop a fan club that runs a big risk of turning into a cult. This often makes it harder rather than easier for people to think clearly and change their minds!

I’d rather look for customs and institutions that encourage meta-rationality. So, my big question is:

How can we encourage rationality and meta-rationality, and make them more popular?

Of course science, and academia, are institutions that have been grappling with this question for centuries. Universities, seminars, conferences, journals, and so on—they all put a lot of work into encouraging the search for knowledge and examining the conditions under which it thrives.

And of course these institutions are imperfect: everything humans do is riddled with flaws.

But instead of listing cases where existing institutions failed to do their job optimally, I’d like to think about ways of developing new customs and institutions that encourage meta-rationality… and linking these to the existing ones.

Why? Because I feel the existing institutions don’t reach out enough to the ‘general public’, or ‘laymen’. The mere existence of these terms is a clue. There are a lot of people who consider academia as an ‘ivory tower’, separate from their own lives and largely irrelevant. And there are a lot of good reasons for this.

There’s one you’ve heard me talk about a lot: academia has let its journals get bought by big multimedia conglomerates, who then charge high fees for access. So, we have have scientific research on global warming paid for by our tax dollars, and published by prestigious journals such as Science and Nature… which unfortunately aren’t available to the ‘general public’.

That’s like a fire alarm you have to pay to hear.

But there’s another problem: institutions that try to encourage meta-rationality seem to operate by shielding themselves from the broader sphere that favors ‘hot’ discussions. Meanwhile, the hot discussions don’t get enough input from ‘cooler’ forums… and vice versa!

For example: we have researchers in climate science who publish in refereed journals, which mostly academics read. We have conferences, seminars and courses where this research is discussed and criticized. These are again attended mostly by academics. Then we have journalists and bloggers who try to explain and discuss these papers in more easily accessed venues. There are some blogs written by climate scientists, who try to short-circuit the middlemen a bit. Unfortunately the heated atmosphere of some of these blogs makes meta-rationality difficult. There are also blogs by ‘climate skeptics’, many from outside academia. These often criticize the published papers, but—it seems to me—rarely get into discussions with the papers’ authors in conditions that make it easy for either party to change their mind. And on top of all this, we have various think tanks who are more or less pre-committed to fixed positions… and of course, corporations and nonprofits paying for advertisements pushing various agendas.

Of course, it’s not just the global warming problem that suffers from a lack of public forums that encourage meta-rationality. That’s just an example. There have got to be some ways to improve the overall landscape a little. Just a little: I’m not expecting miracles!

Details

Here’s the paper by Aumann:

• Robert J. Aumann, Agreeing to disagree, The Annals of Statistics 4 (1976), 1236-1239.

and here’s the one by Cowen and Hanson:

• Tyler Cowen and Robin Hanson, Are disagreements honest?, 18 August 2004.

Personally I find Aumann’s paper uninteresting, because he’s discussing agents that are not only rational Bayesians, but rational Bayesians that share the same priors to begin with! It’s unsurprising that such agents would have trouble finding things to argue about.

His abstract summarizes his result quite clearly… except that he calls these idealized agents ‘people’, which is misleading:

Abstract. Two people, 1 and 2, are said to have common knowledge of an event E if both know it, 1 knows that 2 knows it, 2 knows that 1 knows is, 1 knows that 2 knows that 1 knows it, and so on.

Theorem. If two people have the same priors, and their posteriors for an event A are common knowledge, then these posteriors are equal.

Cowen and Hanson’s paper is more interesting to me. Here are some key sections for what we’re talking about here:

How Few Meta-rationals?

We can call someone a truth-seeker if, given his information and level of effort on a topic, he chooses his beliefs to be as close as possible to the truth. A non-truth seeker will, in contrast, also put substantial weight on other goals when choosing his beliefs. Let us also call someone meta-rational if he is an honest truth-seeker who chooses his opinions as if he understands the basic theory of disagreement, and abides by the rationality standards that most people uphold, which seem to preclude self-favoring priors.

The theory of disagreement says that meta-rational people will not knowingly have self-favoring disagreements among themselves. They might have some honest disagreements, such as on values or on topics of fact where their DNA encodes relevant non-self-favoring attitudes. But they will not have dishonest disagreements, i.e., disagreements directly on their relative ability, or disagreements on other random topics caused by their faith in their own superior knowledge or reasoning ability.

Our working hypothesis for explaining the ubiquity of persistent disagreement is that people are not usually meta-rational. While several factors contribute to this situation, a sufficient cause that usually remains when other causes are removed is that people do not typically seek only truth in their beliefs, not even in a persistent rational core. People tend to be hypocritical in have self-favoring priors, such as priors that violate indexical independence, even though they criticize others for such priors. And they are reluctant to admit this, either publicly or to themselves.

How many meta-rational people can there be? Even if the evidence is not consistent with most people being meta-rational, it seems consistent with there being exactly one meta-rational person. After all, in this case there never appears a pair of meta-rationals to agree with each other. So how many more meta-rationals are possible?

If meta-rational people were common, and able to distinguish one another, then we should see many pairs of people who have almost no dishonest disagreements with each other. In reality, however, it seems very hard to find any pair of people who, if put in contact, could not identify many persistent disagreements. While this is an admittedly difficult empirical determination to make, it suggests that there are either extremely few meta-rational people, or that they have virtually no way to distinguish each other.

Yet it seems that meta-rational people should be discernible via their conversation style. We know that, on a topic where self-favoring opinions would be relevant, the sequence of alternating opinions between a pair of people who are mutually aware of both being meta-rational must follow a random walk. And we know that the opinion sequence between typical non-meta-rational humans is nothing of the sort. If, when responding to the opinions of someone else of uncertain type, a meta-rational person acts differently from an ordinary non-meta-rational person, then two meta-rational people should be able to discern one another via a long enough conversation. And once they discern one another, two meta-rational people should no longer have dishonest disagreements. (Aaronson (2004) has shown that regardless of the topic or their initial opinions, any two Bayesians have less than a 10% chance of disagreeing by more than a 10% after exchanging about a thousand bits, and less than a 1% chance of disagreeing by more than a 1% after exchanging about a million bits.)

Since most people have extensive conversations with hundreds of people, many of whom they know very well, it seems that the fraction of people who are meta-rational must be very small. For example, given N people, a fraction f of whom are meta-rational, let each person participate in C conversations with random others that last long enough for two meta-rational people to discern each other. If so, there should be on average f^2CN/2 pairs who no longer disagree. If, across the world, two billion people, one in ten thousand of who are meta-rational, have one hundred long conversations each, then we should see one thousand pairs of people with only honest disagreements. If, within academia, two million people, one in ten thousand of who are meta-rational, have one thousand long conversations each, we should see ten agreeing pairs of academics. And if meta-rational people had any other clues to discern each another, and preferred to talk with one another, there should be far more such pairs. Yet, with the possible exception of some cult-like or fan-like relationships, where there is an obvious alternative explanation for their agreement, we know of no such pairs of people who no longer disagree on topics where self-favoring opinions are relevant.

We therefore conclude that unless meta-rationals simply cannot distinguish each other, only a tiny non-descript percentage of the population, or of academics, can be meta-rational. Either few people have truth-seeking rational cores, and those that do cannot be readily distinguished, or most people have such cores but they are in control infrequently and unpredictably. Worse, since it seems unlikely that the only signals of meta-rationality would be purely private signals, we each seem to have little grounds for confidence in our own meta-rationality, however much we would like to believe otherwise.

Personally, I think the failure to find ‘ten agreeing pairs of academics’ is not very interesting. Instead of looking for people who are meta-rational in all respects, which seems futile, I’m more interested in to looking for contexts and institutions that encourage people to behave meta-rationally when discussing specific issues.

For example, there’s surprisingly little disagreement among mathematicians when they’re discussing mathematics and they’re on their best behavior—for example, talking in a classroom. Disagreements show up, but they’re often dismissed quickly when one or both parties realize their mistake. The same people can argue bitterly and endlessly over politics or other topics. They are not meta-rational people: I doubt such people exist. They are people who have been encouraged by an institution to behave meta-rationally in specific limited ways… because the institution rewards this behavior.

Moving on:

Personal policy implications

Readers need not be concerned about the above conclusion if they have not accepted our empirical arguments, or if they are willing to embrace the rationality of self-favoring priors, and to forgo criticizing the beliefs of others caused by such priors. Let us assume, however, that you, the reader, are trying to be one of those rare meta-rational souls in the world, if indeed there are any. How guilty should you feel when you disagree on topics where self-favoring opinions are relevant?

If you and the people you disagree with completely ignored each other’s opinions, then you might tend to be right more if you had greater intelligence and information. And if you were sure that you were meta-rational, the fact that most people were not might embolden you to disagree with them. But for a truth-seeker, the key question must be how sure you can be that you, at the moment, are substantially more likely to have a truth-seeking, in-control, rational core than the people you now disagree with. This is because if either of you have some substantial degree of meta-rationality, then your relative intelligence and information are largely irrelevant except as they may indicate which of you is more likely to be self-deceived about being meta-rational.

One approach would be to try to never assume that you are more meta-rational than anyone else. But this cannot mean that you should agree with everyone, because you simply cannot do so when other people disagree among themselves. Alternatively, you could adopt a “middle” opinion. There are, however, many ways to define middle, and people can disagree about which middle is best (Barns 1998). Not only are there disagreements on many topics, but there are also disagreements on how to best correct for one’s limited meta-rationality.

Ideally we would want to construct a model of the process of individual self-deception, consistent with available data on behavior and opinion. We could then use such a model to take the observed distribution of opinion, and infer where lies the weight of evidence, and hence the best estimate of the truth. [Ideally this model would also satisfy a reflexivity constraint: when applied to disputes about self-deception it should select itself as the best model of self-deception. If people reject the claim that most people are self-deceived about their meta-rationality, this approach becomes more difficult, though perhaps not impossible.]

A more limited, but perhaps more feasible, approach to relative meta-rationality is to seek observable signs that indicate when people are self-deceived about their meta-rationality on a particular topic. You might then try to disagree only with those who display such signs more strongly than you do. For example, psychologists have found numerous correlates of self-deception. Self-deception is harder regarding one’s overt behaviors, there is less self-deception in a galvanic skin response (as used in lie detector tests) than in speech, the right brain hemisphere tends to be more honest, evaluations of actions are less honest after those actions are chosen than before (Trivers 2000), self-deceivers have more self-esteem and less psychopathology, especially less depression (Paulhus 1986), and older children are better than younger ones at hiding their self-deception from others (Feldman & Custrini 1988). Each correlate implies a corresponding sign of self-deception.

Other commonly suggested signs of self-deception include idiocy, self-interest, emotional arousal, informality of analysis, an inability to articulate supporting arguments, an unwillingness to consider contrary arguments, and ignorance of standard mental biases. If verified by further research, each of these signs would offer clues for identifying other people as self-deceivers.

Of course, this is easier said than done. It is easy to see how self-deceiving people, seeking to justify their disagreements, might try to favor themselves over their opponents by emphasizing different signs of self-deception in different situations. So looking for signs of self-deception need not be an easier approach than trying to overcome disagreement directly by further discussion on the topic of the disagreement.

We therefore end on a cautionary note. While we have identified some considerations to keep in mind, were one trying to be one of those rare meta-rational souls, we have no general recipe for how to proceed. Perhaps recognizing the difficulty of this problem can at least make us a bit more wary of our own judgments when we disagree.


Prospects for a Green Mathematics

15 February, 2013

contribution to the Mathematics of Planet Earth 2013 blog by John Baez and David Tanzer

It is increasingly clear that we are initiating a sequence of dramatic events across our planet. They include habitat loss, an increased rate of extinction, global warming, the melting of ice caps and permafrost, an increase in extreme weather events, gradually rising sea levels, ocean acidification, the spread of oceanic “dead zones”, a depletion of natural resources, and ensuing social strife.

These events are all connected. They come from a way of life that views the Earth as essentially infinite, human civilization as a negligible perturbation, and exponential economic growth as a permanent condition. Deep changes will occur as these idealizations bring us crashing into the brick wall of reality. If we do not muster the will to act before things get significantly worse, we will need to do so later. While we may plead that it is “too difficult” or “too late”, this doesn’t matter: a transformation is inevitable. All we can do is start where we find ourselves, and begin adapting to life on a finite-sized planet.

Where does math fit into all this? While the problems we face have deep roots, major transformations in society have always caused and been helped along by revolutions in mathematics. Starting near the end of the last ice age, the Agricultural Revolution eventually led to the birth of written numerals and geometry. Centuries later, the Enlightenment and Industrial Revolution brought us calculus and eventually a flowering of mathematics unlike any before. Now, as the 21st century unfolds, mathematics will become increasingly driven by our need to understand the biosphere and our role within it.

We refer to mathematics suitable for understanding the biosphere as green mathematics. Although it is just being born, we can already see some of its outlines.

Since the biosphere is a massive network of interconnected elements, we expect network theory will play an important role in green mathematics. Network theory is a sprawling field, just beginning to become organized, which combines ideas from graph theory, probability theory, biology, ecology, sociology and more. Computation plays an important role here, both because it has a network structure—think of networks of logic gates—and because it provides the means for simulating networks.

One application of network theory is to tipping points, where a system abruptly passes from one regime to another. Scientists need to identify nearby tipping points in the biosphere to help policy makers to head off catastrophic changes. Mathematicians, in turn, are challenged to develop techniques for detecting incipient tipping points. Another application of network theory is the study of shocks and resilience. When can a network recover from a major blow to one of its subsystems?

We claim that network theory is not just another name for biology, ecology, or any other existing science, because in it we can see new mathematical terrains. Here are two examples.

First, consider a leaf. In The Formation of a Tree Leaf by Qinglan Xia, we see a possible key to Nature’s algorithm for the growth of leaf veins. The vein system, which is a transport network for nutrients and other substances, is modeled by Xia as a directed graph with nodes for cells and edges for the “pipes” that connect the cells. Each cell gives a revenue of energy, and incurs a cost for transporting substances to and from it.

The total transport cost depends on the network structure. There are costs for each of the pipes, and costs for turning the fluid around the bends. For each pipe, the cost is proportional to the product of its length, its cross-sectional area raised to a power α, and the number of leaf cells that it feeds. The exponent α captures the savings from using a thicker pipe to transport materials together. Another parameter β expresses the turning cost.

Development proceeds through cycles of growth and network optimization. During growth, a layer of cells gets added, containing each potential cell with a revenue that would exceed its cost. During optimization, the graph is adjusted to find a local cost minimum. Remarkably, by varying α and β, simulations yield leaves resembling those of specific plants, such as maple or mulberry.


A growing network

Unlike approaches that merely create pretty images resembling leaves, Xia presents an algorithmic model, simplified yet illuminating, of how leaves actually develop. It is a network-theoretic approach to a biological subject, and it is mathematics—replete with lemmas, theorems and algorithms—from start to finish.

A second example comes from stochastic Petri nets, which are a model for networks of reactions. In a stochastic Petri net, entities are designated by “tokens” and entity types by “places” which hold the tokens. “Reactions” remove tokens from their input places and deposit tokens at their output places. The reactions fire probabilistically, in a Markov chain where each reaction rate depends on the number of its input tokens.


A stochastic Petri net

Perhaps surprisingly, many techniques from quantum field theory are transferable to stochastic Petri nets. The key is to represent stochastic states by power series. Monomials represent pure states, which have a definite number of tokens at each place. Each variable in the monomial stands for a place, and its exponent indicates the token count. In a linear combination of monomials, each coefficient represents the probability of being in the associated state.

In quantum field theory, states are representable by power series with complex coefficients. The annihilation and creation of particles are cast as operators on power series. These same operators, when applied to the stochastic states of a Petri net, describe the annihilation and creation of tokens. Remarkably, the commutation relations between annihilation and creation operators, which are often viewed as a hallmark of quantum theory, make perfect sense in this classical probabilistic context.

Each stochastic Petri net has a “Hamiltonian” which gives its probabilistic law of motion. It is built from the annihilation and creation operators. Using this, one can prove many theorems about reaction networks, already known to chemists, in a compact and elegant way. See the Azimuth network theory series for details.

Conclusion: The life of a network, and the networks of life, are brimming with mathematical content.

We are pursuing these subjects in the Azimuth Project, an open collaboration between mathematicians, scientists, engineers and programmers trying to help save the planet. On the Azimuth Wiki and Azimuth Blog we are trying to explain the main environmental and energy problems the world faces today. We are also studying plans of action, network theory, climate cycles, the programming of climate models, and more.

If you would like to help, we need you and your special expertise. You can write articles, contribute information, pose questions, fill in details, write software, help with research, help with writing, and more. Just drop us a line.


This post appeared on the blog for Mathematics of Planet Earth 2013, an international project involving over 100 scientific societies, universities, research institutes, and organizations. They’re trying to have a new blog article every day, and you can submit articles as described here.

Here are a few of their other articles:

The mathematics of extreme climatic events—with links to videos.

From the Joint Mathematics Meetings: Conceptual climate models short course—with links to online course materials.

There will always be a Gulf Stream—and exercise in singular perturbation technique.


How to Cut Carbon Emissions and Save Money

27 January, 2012

McKinsey & Company is a management consulting firm. In 2010 they released this ‘carbon abatement cost curve’ for the whole world:

Click it to see a nice big version. So, they’re claiming:

By 2030 we can cut CO2 emissions about 15 gigatonnes per year while saving lots of money.

By 2030 can cut CO2 emissions by up to 37 gigatonnes per year before the total cost—that is, cost minus savings—becomes positive.

The graph is cute. The vertical axis of the graph says how many euros per tonne it would cost to cut CO2 emissions by 2030 using various measures. The horizontal axis says how many gigatonnes per year we could reduce CO2 emissions using these measures.

So, we get lots of blue rectangles. If a rectangle is below the horizontal axis, its area says how many euros per year we’d save by implementing that measure. If it’s above the axis, its area says how much that measure would cost.

I believe the total blue area below the axis equals the total blue area above the axis. So if we do all these things, the total cost is zero.

37 gigatonnes of CO2 is roughly 10 gigatonnes of carbon: remember, there’s a crucial factor of 3\frac{2}{3} here. In 2004, Pacala and Socolow argued that the world needs to find ways to cut carbon emissions by about 7 gigatonnes/year by 2054 to keep emissions flat until this time. By now we’d need 9 gigatonnes/year.

If so, it seems the measures shown here could keep carbon emissions flat worldwide at no net cost!

But as usual, there are at least a few problems.

Problem 1

Is McKinsey’s analysis correct? I don’t know. Here’s their report, along with some others:

• McKinsey & Company, Impact of the financial crisis on carbon economics: Version 2.1 of the global greenhouse gas abatement cost curve, 2010.

For more details it’s good to read version 2.0:

• McKinsey & Company, Pathways to a low carbon economy: Version 2 of the global greenhouse gas abatement cost curve, 2009.

They’re free if you fill out some forms. But it’s not easy to check these things. Does anyone know papers that try to check McKinsey’s work? I find it’s more fun to study a problem like this after you see two sides of the same story.

Problem 2

I said ‘no net cost’. But if you need to spend a lot of money, the fact that I’m saving a lot doesn’t compensate you. So there’s the nontrivial problem of taking money that’s saved on some measures and making sure it gets spent on others. Here’s where ‘big government’ might be required—which makes some people decide global warming is just a political conspiracy, nyeh-heh-heh.

Is there another way to make the money transfer happen, without top-down authority?

We could still get the job about half-done at a huge savings, of course. McKinsey says we could cut CO2 emissions by 15 gigatonnes per year doing things that only save money. That’s about 4 gigatonnes of carbon per year! We could at least do that.

Problem 3

Keeping carbon emissions flat is not enough. Carbon dioxide, once put in the atmosphere, stays there a long time—though individual molecules come and go. As the saying goes, carbon is forever. (Click that link for more precise information.)

So, even Pacala and Socolow say keeping carbon emissions flat is a mere stopgap before we actually reduce carbon emissions, starting in 2054. But some more recent papers seem to suggest Pacala and Socolow were being overly optimistic.

Of course it depends on how much global warming you’re willing to tolerate! It also depends on lots of other things.

Anyway, this paper claims that if we cut global greenhouse gas emissions in half by 2050 (as compared to what they were in 1990), there’s a 12–45% probability that the world will get at least 2 °C warmer than its temperature before the industrial revolution:

• Malte Meinshausen et al, Greenhouse-gas emission targets for limiting global warming to 2 °C, Nature 458 (2009), 1158–1163.

Abstract: More than 100 countries have adopted a global warming limit of 2 °C or below (relative to pre-industrial levels) as a guiding principle for mitigation efforts to reduce climate change risks, impacts and damages. However, the greenhouse gas (GHG) emissions corresponding to a specified maximum warming are poorly known owing to uncertainties in the carbon cycle and the climate response. Here we provide a comprehensive probabilistic analysis aimed at quantifying GHG emission budgets for the 2000–50 period that would limit warming throughout the twenty-first century to below 2 °C, based on a combination of published distributions of climate system properties and observational constraints. We show that, for the chosen class of emission scenarios, both cumulative emissions up to 2050 and emission levels in 2050 are robust indicators of the probability that twenty-first century warming will not exceed 2 °C relative to pre-industrial temperatures.

Limiting cumulative CO2 emissions over 2000–50 to 1,000 Gt CO2 yields a 25% probability of warming exceeding 2 °C—and a limit of 1,440 Gt CO2 yields a 50% probability—given a representative estimate of the distribution of climate system properties. As known 2000–06 CO2 emissions were 234 Gt CO2, less than half the proven economically recoverable oil, gas and coal reserves can still be emitted up to 2050 to achieve such a goal. Recent G8 Communiques envisage halved global GHG emissions by 2050, for which we estimate a 12–45% probability of exceeding 2 °C—assuming 1990 as emission base year and a range of published climate sensitivity distributions. Emissions levels in 2020 are a less robust indicator, but for the scenarios considered, the probability of exceeding 2 °C rises to 53–87% if global GHG emissions are still more than 25% above 2000 levels in 2020.

This paper says we’re basically doomed to suffer unless we revamp society:

• Ted Trainer, Can renewables etc. solve the greenhouse problem? The negative case, Energy Policy 38 (2010), 4107–4114.

Abstract: Virtually all current discussion of climate change and energy problems proceeds on the assumption that technical solutions are possible within basically affluent-consumer societies. There is however a substantial case that this assumption is mistaken. This case derives from a consideration of the scale of the tasks and of the limits of non-carbon energy sources, focusing especially on the need for redundant capacity in winter. The first line of argument is to do with the extremely high capital cost of the supply system that would be required, and the second is to do with the problems set by the intermittency of renewable sources. It is concluded that the general climate change and energy problem cannot be solved without large scale reductions in rates of economic production and consumption, and therefore without transition to fundamentally different social structures and systems.

It’s worth reading because it uses actual numbers, not just hand-waving. But it seeks much more than keeping carbon emissions flat until 2050; that’s one reason for the dire conclusions.

It’s worth noting this rebuttal, which says that everything about Trainer’s paper is fine except a premature dismissal of nuclear power:

• Barry Brook, Could nuclear fission energy, etc., solve the greenhouse problem? The affirmative case, Energy Policy, available online 16 December 2011.

To get your hands on Brook’s paper you either need a subscription or you need to email him. You can do that starting from his blog article about the paper… which is definitely worth reading:

• Barry Brook, Could nuclear fission energy, etc., solve the greenhouse problem? The affirmative case, BraveNewClimate, 14 January 2012.

According to Brook, we can keep global warming from getting too bad if we get really serious about nuclear power.

Of course, these three papers are just a few of many. I’m still trying to sift through the information and figure out what’s really going on. It’s hard. It may be impossible. But McKinsey’s list of ways to cut carbon emissions and save money points to some things we start doing right now.


Buycotts

24 October, 2011

I always thought the opposite of a boycott was a girlcott. Turns out it’s a ‘buycott’.

In a boycott, a bunch of people punish a company they dislike by not buying their stuff. In a buycott, they reward one they like.

Here on Azimuth, Allan Erskine pointed out one organization pushing this idea: Carrotmob, founded by Brent Schulkin. Why ‘Carrotmob’? Well, while a boycott threatens a company with the ‘stick’ of economic punishment, a mob of customers serves as a ‘carrot’ to reward good behavior.

Carrotmob’s first buycott was local: they went to 23 convenience stores in San Francisco with a plan to transform one into the most environmentally-friendly store in the neighborhood, and promised to bring in a bunch of consumers to the winner to spend a bunch of money on one day. In order to receive the increased sales from this event, store owners were invited to place bids on what percentage of that revenue they’d spend on making their store more energy-efficient. The winning bid was 22%, by K & D Market. On the day of the campaign, hundreds of people arrived and spent over $9200. In exchange, the store took 22% of that revenue, and used it to do a full retrofit of their lighting system.

Can it be scaled up? Can these deals be enforced? Time will tell, but it seems like a good thing to try. For one thing, unlike a boycott, it spreads good vibes, because it’s a positive-sum game. On the other hand, over on Google+, Matt McIrvin wrote:

I’m a little skeptical that this kind of approach works over the long term, because it would have the effect of increasing the market price of “good” products through increased demand, which in turn means that anyone who doesn’t care about the attribute in question will be motivated to buy the lower-priced “bad” products instead. What you end up with is just a market sector of politically endorsed products that may do a good niche business but that most people ignore.

This is also the big problem with just telling people to go green instead of taxing or otherwise regulating environmental externalities.

Here are some good stories:

Ready? Set. Shop! One genius environmentalist puts the flash-mob phenomenon to high-minded use, San Francisco Magazine, June 2008.

Change we can profit from, The Economist, 29 January 2009.

For more, try the references here:

Carrotmob, Wikipedia.

What other innovative strategies could environmentalists use, that we should know about?

By the way, boycotts are named after Captain Charles Boycott. The story is sort of interesting…



Follow

Get every new post delivered to your Inbox.

Join 3,094 other followers