guest post by Steve Easterbrook
(7) To stay below 2 °C of warming, the world must become carbon negative
Only one of the four future scenarios (RCP2.6) shows us staying below the UN’s commitment to no more than 2 ºC of warming. In RCP2.6, emissions peak soon (within the next decade or so), and then drop fast, under a stronger emissions reduction policy than anyone has ever proposed in international negotiations to date. For example, the post-Kyoto negotiations have looked at targets in the region of 80% reductions in emissions over say a 50 year period. In contrast, the chart below shows something far more ambitious: we need more than 100% emissions reductions. We need to become carbon negative:

(Figure 12.46) a) CO2 emissions for the RCP2.6 scenario (black) and three illustrative modified emission pathways leading to the same warming, b) global temperature change relative to preindustrial for the pathways shown in panel (a).
The graph on the left shows four possible CO2 emissions paths that would all deliver the RCP2.6 scenario, while the graph on the right shows the resulting temperature change for these four. They all give similar results for temperature change, but differ in how we go about reducing emissions. For example, the black curve shows CO2 emissions peaking by 2020 at a level barely above today’s, and then dropping steadily until emissions are below zero by about 2070. Two other curves show what happens if emissions peak higher and later: the eventual reduction has to happen much more steeply. The blue dashed curve offers an implausible scenario, so consider it a thought experiment: if we held emissions constant at today’s level, we have exactly 30 years left before we would have to instantly reduce emissions to zero forever.
Notice where the zero point is on the scale on that left-hand graph. Ignoring the unrealistic blue dashed curve, all of these pathways require the world to go net carbon negative sometime soon after mid-century. None of the emissions targets currently being discussed by any government anywhere in the world are sufficient to achieve this. We should be talking about how to become carbon negative.
One further detail. The graph above shows the temperature response staying well under 2°C for all four curves, although the uncertainty band reaches up to 2°C. But note that this analysis deals only with CO2. The other greenhouse gases have to be accounted for too, and together they push the temperature change right up to the 2°C threshold. There’s no margin for error.
You can download all of Climate Change 2013: The Physical Science Basis here. Click below to read any part of this series:
- The warming is unequivocal.
- Humans caused the majority of it.
- The warming is largely irreversible.
- Most of the heat is going into the oceans.
- Current rates of ocean acidification are unprecedented.
- We have to choose which future we want very soon.
- To stay below 2°C of warming, the world must become carbon negative.
- To stay below 2°C of warming, most fossil fuels must stay buried in the ground.
Climate Change 2013: The Physical Science Basis is also available chapter by chapter here:
Chapters
- Introduction
- Observations: Atmosphere and Surface
- Observations: Ocean
- Observations: Cryosphere
- Information from Paleoclimate Archives
- Carbon and Other Biogeochemical Cycles
- Clouds and Aerosols
- Anthropogenic and Natural Radiative Forcing
- Evaluation of Climate Models
- Detection and Attribution of Climate Change: from Global to Regional
- Near-term Climate Change: Projections and Predictability
- Long-term Climate Change: Projections, Commitments and Irreversibility
- Sea Level Change
- Climate Phenomena and their Relevance for Future Regional Climate Change
Posted by John Baez 





