I was disappointed when Google gave up. In 2007, the company announced a bold initiative to fight global warming:
Google’s Goal: Renewable Energy Cheaper than Coal
Creates renewable energy R&D group and supports breakthrough technologies
Mountain View, Calif. (November 27, 2007) – Google (NASDAQ: GOOG) today announced a new strategic initiative to develop electricity from renewable energy sources that will be cheaper than electricity produced from coal. The newly created initiative, known as RE<C, will focus initially on advanced solar thermal power, wind power technologies, enhanced geothermal systems and other potential breakthrough technologies. RE<C is hiring engineers and energy experts to lead its research and development work, which will begin with a significant effort on solar thermal technology, and will also investigate enhanced geothermal systems and other areas. In 2008, Google expects to spend tens of millions on research and development and related investments in renewable energy. As part of its capital planning process, the company also anticipates investing hundreds of millions of dollars in breakthrough renewable energy projects which generate positive returns.
But in 2011, Google shut down the program. I never heard why. Recently two engineers involved in the project have given a good explanation:
• Ross Koningstein and David Fork, What it would really take to reverse climate change, 18 November 2014.
Please read it!
But the short version is this. They couldn’t find a way to accomplish their goal: producing a gigawatt of renewable power more cheaply than a coal-fired plant — and in years, not decades.
And since then, they’ve been reflecting on their failure and they’ve realized something even more sobering. Even if they’d been able to realize their best-case scenario — a 55% carbon emissions cut by 2050 — it would not bring atmospheric CO2 back below 350 ppm during this century.
This is not surprising to me.
What would we need to accomplish this? They say two things. First, a cheap dispatchable, distributed power source:
Consider an average U.S. coal or natural gas plant that has been in service for decades; its cost of electricity generation is about 4 to 6 U.S. cents per kilowatt-hour. Now imagine what it would take for the utility company that owns that plant to decide to shutter it and build a replacement plant using a zero-carbon energy source. The owner would have to factor in the capital investment for construction and continued costs of operation and maintenance—and still make a profit while generating electricity for less than $0.04/kWh to $0.06/kWh.
That’s a tough target to meet. But that’s not the whole story. Although the electricity from a giant coal plant is physically indistinguishable from the electricity from a rooftop solar panel, the value of generated electricity varies. In the marketplace, utility companies pay different prices for electricity, depending on how easily it can be supplied to reliably meet local demand.
“Dispatchable” power, which can be ramped up and down quickly, fetches the highest market price. Distributed power, generated close to the electricity meter, can also be worth more, as it avoids the costs and losses associated with transmission and distribution. Residential customers in the contiguous United States pay from $0.09/kWh to $0.20/kWh, a significant portion of which pays for transmission and distribution costs. And here we see an opportunity for change. A distributed, dispatchable power source could prompt a switchover if it could undercut those end-user prices, selling electricity for less than $0.09/kWh to $0.20/kWh in local marketplaces. At such prices, the zero-carbon system would simply be the thrifty choice.
But “dispatchable”, they say, means “not solar”.
Second, a lot of carbon sequestration:
While this energy revolution is taking place, another field needs to progress as well. As Hansen has shown, if all power plants and industrial facilities switch over to zero-carbon energy sources right now, we’ll still be left with a ruinous amount of CO2 in the atmosphere. It would take centuries for atmospheric levels to return to normal, which means centuries of warming and instability. To bring levels down below the safety threshold, Hansen’s models show that we must not only cease emitting CO2 as soon as possible but also actively remove the gas from the air and store the carbon in a stable form. Hansen suggests reforestation as a carbon sink. We’re all for more trees, and we also exhort scientists and engineers to seek disruptive technologies in carbon storage.
How to achieve these two goals? They say government and energy businesses should spend 10% of employee time on “strange new ideas that have the potential to be truly disruptive”.

Posted by John Baez 












