Information and Entropy in Biological Systems (Part 7)

6 June, 2015

In 1961, Rolf Landauer argued that that the least possible amount of energy required to erase one bit of information stored in memory at temperature T is kT \ln 2, where k is Boltzmann’s constant.

This is called the Landauer limit, and it came after many decades of arguments concerning Maxwell’s demon and the relation between information and entropy.

In fact, these arguments are still not finished. For example, here’s an argument that the Landauer limit is not as solid as widely believed:

• John D. Norton, Waiting for Landauer, Studies in History and Philosophy of Modern Physics 42 (2011), 184–198.

But something like the Landauer limit almost surely holds under some conditions! And if it holds, it puts some limits on what organisms can do. That’s what David Wolpert spoke about at our workshop! You can see his slides here:

David WolpertThe Landauer limit and thermodynamics of biological organisms.

You can also watch a video:


Information and Entropy in Biological Systems (Part 6)

1 June, 2015

The resounding lack of comment to this series of posts confirms my theory that a blog post that says “go somewhere else and read something” will never be popular. Even if it’s “go somewhere else and watch a video”, this is too much like saying

Hi! Want to talk? Okay, go into that other room and watch TV, then come back when you’re done and we’ll talk about it.

But no matter: our workshop on Information and Entropy in Biological Systems was really exciting! I want to make it available to the world as much as possible. I’m running around too much to create lovingly hand-crafted summaries of each talk—and I know you’re punishing me for that, with your silence. But I’ll keep on going, just to get the material out there.

Marc Harper spoke about information in evolutionary game theory, and we have a nice video of that. I’ve been excited about his work for quite a while, because it shows that the analogy between ‘evolution’ and ‘learning’ can be made mathematically precise. I summarized some of his ideas in my information geometry series, and I’ve also gotten him to write two articles for this blog:

• Marc Harper, Relative entropy in evolutionary dynamics, Azimuth, 22 January 2014.

• Marc Harper, Stationary stability in finite populations, Azimuth, 24 March 2015.

Here are the slides and video of his talk:

• Marc Harper, Information transport and evolutionary dynamics.


Information and Entropy in Biological Systems (Part 5)

30 May, 2015

John Harte of U. C. Berkeley spoke about the maximum entropy method as a method of predicting patterns in ecology. Annette Ostling of the University of Michigan spoke about some competing theories, such as the ‘neutral model’ of biodiversity—a theory that sounds much too simple to be right, yet fits the data surprisingly well!

We managed to get a video of Ostling’s talk, but not Harte’s. Luckily, you can see the slides of both. You can also see a summary of Harte’s book Maximum Entropy and Ecology:

• John Baez, Maximum entropy and ecology, Azimuth, 21 February 2013.

Here are his talk slides and abstract:

• John Harte, Maximum entropy as a foundation for theory building in ecology.

Abstract. Constrained maximization of information entropy (MaxEnt) yields least-biased probability distributions. In statistical physics, this powerful inference method yields classical statistical mechanics/thermodynamics under the constraints imposed by conservation laws. I apply MaxEnt to macroecology, the study of the distribution, abundance, and energetics of species in ecosystems. With constraints derived from ratios of ecological state variables, I show that MaxEnt yields realistic abundance distributions, species-area relationships, spatial aggregation patterns, and body-size distributions over a wide range of taxonomic groups, habitats and spatial scales. I conclude with a brief summary of some of the major opportunities at the frontier of MaxEnt-based macroecological theory.

Here is a video of Ostling’s talk, as well as her slides and some papers she recommended:

• Annette Ostling, The neutral theory of biodiversity and other competitors to maximum entropy.

Abstract: I am a bit of the odd man out in that I will not talk that much about information and entropy, but instead about neutral theory and niche theory in ecology. My interest in coming to this workshop is in part out of an interest in what greater insights we can get into neutral models and stochastic population dynamics in general using entropy and information theory.

I will present the niche and neutral theories of the maintenance of diversity of competing species in ecology, and explain the dynamics included in neutral models in ecology. I will also briefly explain how one can derive a species abundance distribution from neutral models. I will present the view that neutral models have the potential to serve as more process-based null models than previously used in ecology for detecting the signature of niches and habitat filtering. However, tests of neutral theory in ecology have not as of yet been as useful as tests of neutral theory in evolutionary biology, because they leave open the possibility that pattern is influenced by “demographic complexity” rather than niches. I will mention briefly some of the work I’ve been doing to try to construct better tests of neutral theory.

Finally I’ll mention some connections that have been made so far between predictions of entropy theory and predictions of neutral theory in ecology and evolution.

These papers present interesting relations between ecology and statistical mechanics. Check out the nice ‘analogy chart’ in the second one!

• M. G. Bowler, Species abundance distributions, statistical mechanics and the priors of MaxEnt, Theoretical Population Biology 92 (2014), 69–77.

Abstract. The methods of Maximum Entropy have been deployed for some years to address the problem of species abundance distributions. In this approach, it is important to identify the correct weighting factors, or priors, to be applied before maximising the entropy function subject to constraints. The forms of such priors depend not only on the exact problem but can also depend on the way it is set up; priors are determined by the underlying dynamics of the complex system under consideration. The problem is one of statistical mechanics and it is the properties of the system that yield the correct MaxEnt priors, appropriate to the way the problem is framed. Here I calculate, in several different ways, the species abundance distribution resulting when individuals in a community are born and die independently. In
the usual formulation the prior distribution for the number of species over the number of individuals is 1/n; the problem can be reformulated in terms of the distribution of individuals over species classes, with a uniform prior. Results are obtained using master equations for the dynamics and separately through the combinatoric methods of elementary statistical mechanics; the MaxEnt priors then emerge a posteriori. The first object is to establish the log series species abundance distribution as the outcome of per capita guild dynamics. The second is to clarify the true nature and origin of priors in the language of MaxEnt. Finally, I consider how it may come about that the distribution is similar to log series in the event that filled niches dominate species abundance. For the general ecologist, there are two messages. First, that species abundance distributions are determined largely by population sorting through fractional processes (resulting in the 1/n factor) and secondly that useful information is likely to be found only in departures from the log series. For the MaxEnt practitioner, the message is that the prior with respect to which the entropy is to be maximised is determined by the nature of the problem and the way in which it is formulated.

• Guy Sella and Aaron E. Hirsh, The application of statistical physics to evolutionary biology, Proc. Nat. Acad. Sci. 102 (2005), 9541–9546.

A number of fundamental mathematical models of the evolutionary process exhibit dynamics that can be difficult to understand analytically. Here we show that a precise mathematical analogy can be drawn between certain evolutionary and thermodynamic systems, allowing application of the powerful machinery of statistical physics to analysis of a family of evolutionary models. Analytical results that follow directly from this approach include the steady-state distribution of fixed genotypes and the load in finite populations. The analogy with statistical physics also reveals that, contrary to a basic tenet of the nearly neutral theory of molecular evolution, the frequencies of adaptive and deleterious substitutions at steady state are equal. Finally, just as the free energy function quantitatively characterizes the balance between energy and entropy, a free fitness function provides an analytical expression for the balance between natural selection and stochastic drift.


Information and Entropy in Biological Systems (Part 4)

21 May, 2015

I kicked off the workshop on Information and Entropy in Biological Systems with a broad overview of the many ways information theory and entropy get used in biology:

• John Baez, Information and entropy in biological systems.

Abstract. Information and entropy are being used in biology in many different ways: for example, to study biological communication systems, the ‘action-perception loop’, the thermodynamic foundations of biology, the structure of ecosystems, measures of biodiversity, and evolution. Can we unify these? To do this, we must learn to talk to each other. This will be easier if we share some basic concepts which I’ll sketch here.

The talk is full of links, in blue. If you click on these you can get more details. You can also watch a video of my talk:


Information and Entropy in Biological Systems (Part 3)

20 May, 2015

We had a great workshop on information and entropy in biological systems, and now you can see what it was like. I think I’ll post these talks one a time, or maybe a few at a time, because they’d be overwhelming taken all at once.

So, let’s dive into Chris Lee’s exciting ideas about organisms as ‘information evolving machines’ that may provide ‘disinformation’ to their competitors. Near the end of his talk, he discusses some new results on an ever-popular topic: the Prisoner’s Dilemma. You may know about this classic book:

• Robert Axelrod, The Evolution of Cooperation, Basic Books, New York, 1984. Some passages available free online.

If you don’t, read it now! He showed that the simple ‘tit for tat’ strategy did very well in some experiments where the game was played repeatedly and strategies who did well got to ‘reproduce’ themselves. This result was very exciting, so a lot of people have done research on it. More recently a paper on this subject by William Press and Freeman Dyson received a lot of hype. I think this is a good place to learn about that:

• Mike Shulman, Zero determinant strategies in the iterated Prisoner’s Dilemma, The n-Category Café, 19 July 2012.

Chris Lee’s new work on the Prisoner’s Dilemma is here, cowritten with two other people who attended the workshop:

The art of war: beyond memory-one strategies in population games, PLOS One, 24 March 2015.

Abstract. We show that the history of play in a population game contains exploitable information that can be successfully used by sophisticated strategies to defeat memory-one opponents, including zero determinant strategies. The history allows a player to label opponents by their strategies, enabling a player to determine the population distribution and to act differentially based on the opponent’s strategy in each pairwise interaction. For the Prisoner’s Dilemma, these advantages lead to the natural formation of cooperative coalitions among similarly behaving players and eventually to unilateral defection against opposing player types. We show analytically and empirically that optimal play in population games depends strongly on the population distribution. For example, the optimal strategy for a minority player type against a resident tit-for-tat (TFT) population is ‘always cooperate’ (ALLC), while for a majority player type the optimal strategy versus TFT players is ‘always defect’ (ALLD). Such behaviors are not accessible to memory-one strategies. Drawing inspiration from Sun Tzu’s the Art of War, we implemented a non-memory-one strategy for population games based on techniques from machine learning and statistical inference that can exploit the history of play in this manner. Via simulation we find that this strategy is essentially uninvadable and can successfully invade (significantly more likely than a neutral mutant) essentially all known memory-one strategies for the Prisoner’s Dilemma, including ALLC (always cooperate), ALLD (always defect), tit-for-tat (TFT), win-stay-lose-shift (WSLS), and zero determinant (ZD) strategies, including extortionate and generous strategies.

And now for the talk! Click on the talk title here for Chris Lee’s slides, or go down and watch the video:

• Chris Lee, Empirical information, potential information and disinformation as signatures of distinct classes of information evolving machines.

Abstract. Information theory is an intuitively attractive way of thinking about biological evolution, because it seems to capture a core aspect of biology—life as a solution to “information problems”—in a fundamental way. However, there are non-trivial questions about how to apply that idea, and whether it has actual predictive value. For example, should we think of biological systems as being actually driven by an information metric? One idea that can draw useful links between information theory, evolution and statistical inference is the definition of an information evolving machine (IEM) as a system whose elements represent distinct predictions, and whose weights represent an information (prediction power) metric, typically as a function of sampling some iterative observation process. I first show how this idea provides useful results for describing a statistical inference process, including its maximum entropy bound for optimal inference, and how its sampling-based metrics (“empirical information”, Ie, for prediction power; and “potential information”, Ip, for latent prediction power) relate to classical definitions such as mutual information and relative entropy. These results suggest classification of IEMs into several distinct types:

1. Ie machine: e.g. a population of competing genotypes evolving under selection and mutation is an IEM that computes an Ie equivalent to fitness, and whose gradient (Ip) acts strictly locally, on mutations that it actually samples. Its transition rates between steady states will decrease exponentially as a function of evolutionary distance.

2. “Ip tunneling” machine: a statistical inference process summing over a population of models to compute both Ie, Ip can directly detect “latent” information in the observations (not captured by its model), which it can follow to “tunnel” rapidly to a new steady state.

3. disinformation machine (multiscale IEM): an ecosystem of species is an IEM whose elements (species) are themselves IEMs that can interact. When an attacker IEM can reduce a target IEM’s prediction power (Ie) by sending it a misleading signal, this “disinformation dynamic” can alter the evolutionary landscape in interesting ways, by opening up paths for rapid co-evolution to distant steady-states. This is especially true when the disinformation attack targets a feature of high fitness value, yielding a combination of strong negative selection for retention of the target feature, plus strong positive selection for escaping the disinformation attack. I will illustrate with examples from statistical inference and evolutionary game theory. These concepts, though basic, may provide useful connections between diverse themes in the workshop.


Kinetic Networks: From Topology to Design

16 April, 2015

Here’s an interesting conference for those of you who like networks and biology:

Kinetic networks: from topology to design, Santa Fe Institute, 17–19 September, 2015. Organized by Yoav Kallus, Pablo Damasceno, and Sidney Redner.

Proteins, self-assembled materials, virus capsids, and self-replicating biomolecules go through a variety of states on the way to or in the process of serving their function. The network of possible states and possible transitions between states plays a central role in determining whether they do so reliably. The goal of this workshop is to bring together researchers who study the kinetic networks of a variety of self-assembling, self-replicating, and programmable systems to exchange ideas about, methods for, and insights into the construction of kinetic networks from first principles or simulation data, the analysis of behavior resulting from kinetic network structure, and the algorithmic or heuristic design of kinetic networks with desirable properties.


Stationary Stability in Finite Populations

24 March, 2015

guest post by Marc Harper

A while back, in the article Relative entropy minimization in evolutionary dynamics, we looked at extensions of the information geometry / evolutionary game theory story to more general time-scales, incentives, and geometries. Today we’ll see how to make this all work in finite populations!

Let’s recall the basic idea from last time, which John also described in his information geometry series. The main theorem is this: when there’s an evolutionarily stable state for a given fitness landscape, the relative entropy between the stable state and the population distribution decreases along the population trajectories as they converge to the stable state. In short, relative entropy is a Lyapunov function. This is a nice way to look at the action of a population under natural selection, and it has interesting analogies to Bayesian inference.

The replicator equation is a nice model from an intuitive viewpoint, and it’s mathematically elegant. But it has some drawbacks when it comes to modeling real populations. One major issue is that the replicator equation implicitly assumes that the population proportions of each type are differentiable functions of time, obeying a differential equation. This only makes sense in the limit of large populations. Other closely related models, such as the Lotka-Volterra model, focus on the number of individuals of each type (e.g. predators and prey) instead of the proportion. But they often assume that the number of individuals is a differentiable function of time, and a population of 3.5 isn’t very realistic either.

Real populations of replicating entities are not infinitely large; in fact they are often relatively small and of course have whole numbers of each type, at least for large biological replicators (like animals). They take up space and only so many can interact meaningfully. There are quite a few models of evolution that handle finite populations and some predate the replicator equation. Models with more realistic assumptions typically have to leave the realm of derivatives and differential equations behind, which means that the analysis of such models is more difficult, but the behaviors of the models are often much more interesting. Hopefully by the end of this post, you’ll see how all of these diagrams fit together:








One of the best-known finite population models is the Moran process, which is a Markov chain on a finite population. This is the quintessential birth-death process. For a moment consider a population of just two types A and B. The state of the population is given by a pair of nonnegative integers (a,b) with a+b=N, the total number of replicators in the population, and a and b the number of individuals of type A and B respectively. Though it may artificial to fix the population size N, this often turns out not to be that big of a deal, and you can assume the population is at its carrying capacity to make the assumption realistic. (Lots of people study populations that can change size and that have replicators spatially distributed say on a graph, but we’ll assume they can all interact with each whenever they want for now).

A Markov model works by transitioning from state to state in each round of the process, so we need to define the transitions probabilities to complete the model. Let’s put a fitness landscape on the population, given by two functions f_A and f_B of the population state (a,b). Now we choose an individual to reproduce proportionally to fitness, e.g. we choose an A individual to reproduce with probability

\displaystyle{ \frac{a f_A}{a f_A + b f_B} }

since there are a individuals of type A and they each have fitness f_A. This is analogous to the ratio of fitness to mean fitness from the discrete replicator equation, since

\displaystyle{ \frac{a f_A}{a f_A + b f_B} =  \frac{\frac{a}{N} f_A}{\frac{a}{N} f_A + \frac{b}{N} f_B} \to \frac{x_i f_i(x)}{\overline{f(x)}} }

and the discrete replicator equation is typically similar to the continuous replicator equation (this can be made precise), so the Moran process captures the idea of natural selection in a similar way. Actually there is a way to recover the replicator equation from the Moran process in large populations—details at the end!

We’ll assume that the fitnesses are nonnegative and that the total fitness (the denominator) is never zero; if that seems artificial, some people prefer to transform the fitness landscape by e^{\beta f(x)}, which gives a ratio reminiscent of the Boltzmann or Fermi distribution from statistical physics, with the parameter \beta playing the role of intensity of selection rather than inverse temperature. This is sometimes called Fermi selection.

That takes care of the birth part. The death part is easier: we just choose an individual at random (uniformly) to be replaced. Now we can form the transition probabilities of moving between population states. For instance the probability of moving from state (a,b) to (a+1, b-1) is given by the product of the birth and death probabilities, since they are independent:

\displaystyle{ T_a^{a+1} = \frac{a f_A}{a f_A + b f_B} \frac{b}{N} }

since we have to chose a replicator of type A to reproduce and one of type B to be replaced. Similarly for (a,b) to (a-1, b+1) (switch all the a’s and b’s), and we can write the probability of staying in the state (a, N-a) as

T_a^{a} = 1 - T_{a}^{a+1} - T_{a}^{a-1}

Since we only replace one individual at a time, this covers all the possible transitions, and keeps the population constant.

We’d like to analyze this model and many people have come up with clever ways to do so, computing quantities like fixation probabilities (also known as absorption probabilities), indicating the chance that the population will end up with one type completely dominating, i.e. in state (0, N) or (N,0). If we assume that the fitness of type A is constant and simply equal to 1, and the fitness of type B is r \neq 1, we can calculate the probability that a single mutant of type B will take over a population of type A using standard Markov chain methods:

\displaystyle{\rho = \frac{1 - r^{-1}}{1 - r^{-N}} }

For neutral relative fitness (r=1), \rho = 1/N, which is the probability a neutral mutant invades by drift alone since selection is neutral. Since the two boundary states (0, N) or (N,0) are absorbing (no transitions out), in the long run every population ends up in one of these two states, i.e. the population is homogeneous. (This is the formulation referred to by Matteo Smerlak in The mathematical origins of irreversibility.)

That’s a bit different flavor of result than what we discussed previously, since we had stable states where both types were present, and now that’s impossible, and a bit disappointing. We need to make the population model a bit more complex to have more interesting behaviors, and we can do this in a very nice way by adding the effects of mutation. At the time of reproduction, we’ll allow either type to mutate into the other with probability \mu. This changes the transition probabilities to something like

\displaystyle{ T_a^{a+1} = \frac{a (1-\mu) f_A + b \mu f_B}{a f_A + b f_B} \frac{b}{N} }

Now the process never stops wiggling around, but it does have something known as a stationary distribution, which gives the probability that the population is in any given state in the long run.

For populations with more than two types the basic ideas are the same, but there are more neighboring states that the population could move to, and many more states in the Markov process. One can also use more complicated mutation matrices, but this setup is good enough to typically guarantee that no one species completely takes over. For interesting behaviors, typically \mu = 1/N is a good choice (there’s some biological evidence that mutation rates are typically inversely proportional to genome size).

Without mutation, once the population reached (0,N) or (N,0), it stayed there. Now the population bounces between states, either because of drift, selection, or mutation. Based on our stability theorems for evolutionarily stable states, it’s reasonable to hope that for small mutation rates and larger populations (less drift), the population should spend most of its time near the evolutionarily stable state. This can be measured by the stationary distribution which gives the long run probabilities of a process being in a given state.

Previous work by Claussen and Traulsen:

• Jens Christian Claussen and Arne Traulsen, Non-Gaussian fluctuations arising from finite populations: exact results for the evolutionary Moran process, Physical Review E 71 (2005), 025101.

suggested that the stationary distribution is at least sometimes maximal around evolutionarily stable states. Specifically, they showed that for a very similar model with fitness landscape given by

\left(\begin{array}{c} f_A \\ f_B \end{array}\right)  = \left(\begin{array}{cc} 1 & 2\\ 2&1 \end{array}\right)  \left(\begin{array}{c} a\\ b \end{array}\right)

the stationary state is essentially a binomial distribution centered at (N/2, N/2).

Unfortunately, the stationary distribution can be very difficult to compute for an arbitrary Markov chain. While it can be computed for the Markov process described above without mutation, and in the case studied by Claussen and Traulsen, there’s no general analytic formula for the process with mutation, nor for more than two types, because the processes are not reversible. Since we can’t compute the stationary distribution analytically, we’ll have to find another way to show that the local maxima of the stationary distribution are “evolutionarily stable”. We can approximate the stationary distribution fairly easily with a computer, so it’s easy to plot the results for just about any landscape and reasonable population size (e.g. N \approx 100).

It turns out that we can use a relative entropy minimization approach, just like for the continuous replicator equation! But how? We lack some essential ingredients such as deterministic and differentiable trajectories. Here’s what we do:

• We show that the local maxima and minima of the stationary distribution satisfy a complex balance criterion.

• We then show that these states minimize an expected relative entropy.

• This will mean that the current state and the expected next state are ‘close’.

• Lastly, we show that these states satisfy an analogous definition of evolutionary stability (now incorporating mutation).

The relative entropy allows us to measure how close the current state is to the expected next state, which captures the idea of stability in another way. This ports the relative minimization Lyapunov result to some more realistic Markov chain models. The only downside is that we’ll assume the populations are “sufficiently large”, but in practice for populations of three types, N=20 is typically enough for common fitness landscapes (there are lots of examples here for N=80, which are prettier than the smaller populations). The reason for this is that the population state (a,b) needs enough “resolution” (a/N, b/N) to get sufficiently close to the stable state, which is not necessarily a ratio of integers. If you allow some wiggle room, smaller populations are still typically pretty close.

Evolutionarily stable states are closely related to Nash equilibria, which have a nice intuitive description in traditional game theory as “states that no player has an incentive to deviate from”. But in evolutionary game theory, we don’t use a game matrix to compute e.g. maximum payoff strategies, rather the game matrix defines a fitness landscape which then determines how natural selection unfolds.

We’re going to see this idea again in a moment, and to help get there let’s introduce an function called an incentive that encodes how a fitness landscape is used for selection. One way is to simply replace the quantities a f_A(a,b) and b f_B(a,b) in the fitness-proportionate selection ratio above, which now becomes (for two population types):

\displaystyle{ \frac{\varphi_A(a,b)}{\varphi_A(a,b) + \varphi_B(a,b)} }

Here \varphi_A(a,b) and \varphi_B(a,b) are the incentive function components that determine how the fitness landscape is used for natural selection (if at all). We have seen two examples above:

\varphi_A(a,b) = a f_A(a, b)

for the Moran process and fitness-proportionate selection, and

\varphi_A(a,b) = a e^{\beta f_A(a, b)}

for an alternative that incorporates a strength of selection term \beta, preventing division by zero for fitness landscapes defined by zero-sum game matrices, such as a rock-paper-scissors game. Using an incentive function also simplifies the transition probabilities and results as we move to populations of more than two types. Introducing mutation, we can describe the ratio for incentive-proportion selection with mutation for the ith population type when the population is in state x=(a,b,\ldots) / N as

\displaystyle{ p_i(x) = \frac{\sum_{k=1}^{n}{\varphi_k(x) M_{i k} }}{\sum_{k=1}^{n}{\varphi_k(x)}} }

for some matrix of mutation probabilities M. This is just the probability that we get a new individual of the ith type (by birth and/or mutation). A common choice for the mutation matrix is to use a single mutation probability \mu and spread it out over all the types, such as letting

M_{ij} = \mu / (n-1)

and

M_{ii} = 1 - \mu

Now we are ready to define the expected next state for the population and see how it captures a notion of stability. For a given state population x in a multitype population, using x to indicate the normalized population state (a,b,\ldots) / N, consider all the neighboring states y that the population could move to in one step of the process (one birth-death cycle). These neighboring states are the result of increasing a population type by one (birth) and decreasing another by one (death, possibly the same type), of course excluding cases on the boundary where the number of individuals of any type drops below zero or rises above N. Now we can define the expected next state as the sum of neighboring states weighted by the transition probabilities

E(x) = \sum_{y}{y T_x^{y}}

with transition probabilities given by

T_{x}^{y} = p_{i}(x) x_{j}

for states y that differ in 1/N at the ith coordinate and -1/N at jth coordinate from x. Here x_j is just the probability of the random death of an individual of the jth type, so the transition probabilities are still just birth (with mutation) and death as for the Moran process we started with.

Skipping some straightforward algebraic manipulations, we can show that

\displaystyle{ E(x) = \sum_{y}{y T_x^{y}} = \frac{N-1}{N}x + \frac{1}{N}p(x)}

Then it’s easy to see that E(x) = x if and only if x = p(x), and that x = p(x) if and only if x_i = \varphi_i(x). So we have a nice description of ‘stability’ in terms of fixed points of the expected next state function and the incentive function

x = E(x) = p(x) = \varphi(x),

and we’ve gotten back to “no one has an incentive to deviate”. More precisely, for the Moran process

\varphi_i(x) = x_i f_i(x)

and we get back f_i(x) = f_j(x) for every type. So we take x = \varphi(x) as our analogous condition to an evolutionarily stable state, though it’s just the ‘no motion’ part and not also the ‘stable’ part. That’s what we need the stationary distribution for!

To turn this into a useful number that measures stability, we use the relative entropy of the expected next state and the current state, in analogy with the Lyapunov theorem for the replicator equation. The relative entropy

\displaystyle{ D(x, y) = \sum_i x_i \ln(x_i) - y_i \ln(x_i) }

has the really nice property that D(x,y) = 0 if and only if x = y, so we can use the relative entropy D(E(x), x) as a measure of how close to stable any particular state is! Here the expected next state takes the place of the ‘evolutionarily stable state’ in the result described last time for the replicator equation.

Finally, we need to show that the maxima (and minima) of of the stationary distribution are these fixed points by showing that these states minimize the expected relative entropy.

Seeing that local maxima and minima of the stationary distribution minimize the expected relative entropy is a more involved, so let’s just sketch the details. In general, these Markov processes are not reversible, so they don’t satisfy the detailed-balance condition, but the stationary probabilities do satisfy something called the global balance condition, which says that for the stationary distribution s we have that

s_x \sum_{x}{T_x^{y}} = \sum_{y}{s_y T_y^{x}}

When the stationary distribution is at a local maximum (or minimum), we can show essentially that this implies (up to an \epsilon, for a large enough population) that

\displaystyle{\sum_{x}{T_x^{y}} = \sum_{y}{T_y^{x}} }

a sort of probability inflow-outflow equation, which is very similar to the condition of complex balanced equilibrium described by Manoj Gopalkrishnan in this Azimuth post. With some algebraic manipulation, we can show that these states have E(x)=x.

Now let’s look again at the figures from the start. The first shows the vector field of the replicator equation:

You can see rest points at the center, on the center of each boundary edge, and on the corner points. The center point is evolutionarily stable, the center points of the boundary are semi-stable (but stable when the population is restricted to a boundary simplex), and the corner points are unstable.

This one shows the stationary distribution for a finite population model with a Fermi incentive on the same landscape, for a population of size 80:

A fixed population size gives a partitioning of the simplex, and each triangle of the partition is colored by the value of the stationary distribution. So you can see that there are local maxima in the center and on the centers of the triangle boundary edges. In this case, the size of the mutation probability determines how much of the stationary distribution is concentrated on the center of the simplex.

This shows one-half of the Euclidean distance squared between the current state and the expected next state:

And finally, this shows the same thing but with the relative entropy as the ‘distance function':

As you can see, the Euclidean distance is locally minimal at each of the local maxima and minima of the stationary distribution (including the corners); the relative entropy is only guaranteed so on the interior states (because the relative entropy doesn’t play nicely with the boundary, and unlike the replicator equation, the Markov process can jump on and off the boundary). It turns out that the relative Rényi entropies for q between 0 and 1 also work just fine, but for the large population limit (the replicator dynamic), the relative entropy is the somehow the right choice for the replicator equation (has the derivative that easily gives Lyapunov stability), which is due to the connections between relative entropy and Fisher information in the information geometry of the simplex. The Euclidean distance is the q=0 case and the ordinary relative entropy is q=1.

As it turns out, something very similar holds for another popular finite population model, the Wright–Fisher process! This model is more complicated, so if you are interested in the details, check out our paper, which has many nice examples and figures. We also define a process that bridges the gap between the atomic nature of the Moran process and the generational nature of the Wright–Fisher process, and prove the general result for that model.

Finally, let’s see how the Moran process relates back to the replicator equation (see also the appendix in this paper), and how we recover the stability theory of the replicator equation. We can use the transition probabilities of the Moran process to define a stochastic differential equation (called a Langevin equation) with drift and diffusion terms that are essentially (for populations with two types:

\mathrm{Drift}(x) = T^{+}(x) - T^{-}(x)

\displaystyle{ \mathrm{Diffusion}(x) = \sqrt{\frac{T^{+}(x) + T^{-}(x)}{N}} }

As the population size gets larger, the diffusion term drops out, and the stochastic differential equation becomes essentially the replicator equation. For the stationary distribution, the variance (e.g. for the binomial example above) also has an inverse dependence on N, so the distribution limits to a delta-function that is zero except for at the evolutionarily stable state!

What about the relative entropy? Loosely speaking, as the population size gets larger, the iteration of the expected next state also becomes deterministic. Then the evolutionarily stable states is a fixed point of the expected next state function, and the expected relative entropy is essentially the same as the ordinary relative entropy, at least in a neighborhood of the evolutionarily stable state. This is good enough to establish local stability.

Earlier I said both the local maxima and minima minimize the expected relative entropy. Dash and I haven’t proven that the local maxima always correspond to evolutionarily stable states (and the minima to unstable states). That’s because the generalization of evolutionarily stable state we use is really just a ‘no motion’ condition, and isn’t strong enough to imply stability in a neighborhood for the deterministic replicator equation. So for now we are calling the local maxima stationary stable states.

We’ve also tried a similar approach to populations evolving on networks, which is a popular topic in evolutionary graph theory, and the results are encouraging! But there are many more ‘states’ in such a process, since the configuration of the network has to be taken into account, and whether the population is clustered together or not. See the end of our paper for an interesting example of a population on a cycle.


Follow

Get every new post delivered to your Inbox.

Join 3,025 other followers