Ken Caldeira on What To Do

25 January, 2016

Famous climate scientist Ken Caldeira has a new article out:

• Ken Caldeira, Stop Emissions!, Technology Review, January/February 2016, 41–43.

Let me quote a bit:

Many years ago, I protested at the gates of a nuclear power plant. For a long time, I believed it would be easy to get energy from biomass, wind, and solar. Small is beautiful. Distributed power, not centralized.

I wish I could still believe that.

My thinking changed when I worked with Marty Hoffert of New York University on research that was first published in Nature in 1998. It was the first peer-reviewed study that examined the amount of near-zero-emission energy we would need in order to solve the climate problem. Unfortunately, our conclusions still hold. We need massive deployment of affordable and dependable near-zero-emission energy, and we need a major research and development program to develop better energy and transportation systems.

It’s true that wind and solar power have been getting much more attractive in recent years. Both have gotten significantly cheaper. Even so, neither wind nor solar is dependable enough, and batteries do not yet exist that can store enough energy at affordable prices to get a modern industrial society through those times when the wind is not blowing and the sun is not shining.

Recent analyses suggest that wind and solar power, connected by a continental-scale electric grid and using natural-gas power plants to provide backup, could reduce greenhouse-gas emissions from electricity production by about two-thirds. But generating electricity is responsible for only about one-third of total global carbon dioxide emissions, which are increasing by more than 2 percent a year. So even if we had this better electric sector tomorrow, within a decade or two emissions would be back where they are today.

We need to bring much, much more to bear on the climate problem. It can’t be solved unless it is addressed as seriously as we address national security. The politicians who go to the Paris Climate Conference are making commitments that fall far short of what would be needed to substantially reduce climate risk.

Daunting math

Four weeks ago, a hurricane-strength cyclone smashed into Yemen, in the Arabian Peninsula, for the first time in recorded history. Also this fall, a hurricane with the most powerful winds ever measured slammed into the Pacific coast of Mexico.

Unusually intense storms such as these are a predicted consequence of global warming, as are longer heat waves and droughts and many other negative weather-related events that we can expect to become more commonplace. Already, in the middle latitudes of the Northern Hemisphere, average temperatures are increasing at a rate that is equivalent to moving south about 10 meters (30 feet) each day. This rate is about 100 times faster than most climate change that we can observe in the geologic record, and it gravely threatens biodiversity in many parts of the world. We are already losing about two coral reefs each week, largely as a direct consequence of our greenhouse-gas emissions.

Recently, my colleagues and I studied what will happen in the long term if we continue pulling fossil carbon out of the ground and releasing it into the atmosphere. We found that it would take many thousands of years for the planet to recover from this insult. If we burn all available fossil-fuel resources and dump the resulting carbon dioxide waste in the sky, we can expect global average temperatures to be 9 °C (15 °F) warmer than today even 10,000 years into the future. We can expect sea levels to be about 60 meters (200 feet) higher than today. In much of the tropics, it is possible that mammals (including us) would not be able to survive outdoors in the daytime heat. Thus, it is essential to our long-term well-being that fossil-fuel carbon does not go into our atmosphere.

If we want to reduce the threat of climate change in the near future, there are actions to take now: reduce emissions of short-lived pollutants such as black carbon, cut emissions of methane from natural-gas fields and landfills, and so on. We need to slow and then reverse deforestation, adopt electric cars, and build solar, wind, and nuclear plants.

But while existing technologies can start us down the path, they can’t get us to our goal. Most analysts believe we should decarbonize electricity generation and use electricity for transportation, industry, and even home heating. (Using electricity for heating is wildly inefficient, but there may be no better solution in a carbon-constrained world.) This would require a system of electricity generation several times larger than the one we have now. Can we really use existing technology to scale up our system so dramatically while markedly reducing emissions from that sector?

Solar power is the only energy source that we know can power civilization indefinitely. Unfortunately, we do not have global-scale electricity grids that could wheel solar energy from day to night. At the scale of the regional electric grid, we do not have batteries that can balance daytime electricity generation with nighttime demand.

We should do what we know how to do. But all the while, we need to be thinking about what we don’t know how to do. We need to find better ways to generate, store, and transmit electricity. We also need better zero-carbon fuels for the parts of the economy that can’t be electrified. And most important, perhaps, we need better ways of using energy.

Energy is a means, not an end. We don’t want energy so much as we want what it makes possible: transportation, entertainment, shelter, and nutrition. Given United Nations estimates that the world will have at least 11 billion people by the end of this century (50 percent more than today), and given that we can expect developing economies to grow rapidly, demand for services that require energy is likely to increase by a factor of 10 or more over the next century. If we want to stabilize the climate, we need to reduce total emissions from today’s level by a factor of 10. Put another way, if we want to destroy neither our environment nor our economy, we need to reduce the emissions per energy service provided by a factor of 100. This requires something of an energy miracle.

The essay continues.

Near the end, he writes “despite all these reasons for despair, I’m hopeful”. He is hopeful that a collective change of heart is underway that will enable humanity to solve this problem. But he doesn’t claim to know any workable solution to the problem. In fact, he mostly list reasons why various possible solutions won’t be enough.


Good News (Part 2)

25 December, 2015

 

When I visited Cambodia I went to Kompong Phluk, a village where all the houses are on stilts, and everyone knows how to swim. The villagers raise fish in the Tonlé Sap, which is the largest freshwater lake in southeast Asia. During the dry season, from November to May, this lake drains into the Mekong River near Phnom Penh. But during the monsoons, water flows back from the Mekong into the lake, and it grows six-fold in area! We took a boat ride down this muddy river into the Tonlé Sap and saw the fish farms.

In 2008, a Canadian student named Christopher Charles was working in rural Cambodia. He was living in a house on stilts. He had no electricity or running water, but lots time to sit around and think.

He started thinking about anemia.

Anemia is often caused by an iron deficiency. It makes you tired and weak. You have trouble thinking clearly. Almost half of Cambodia’s population suffers from this disease! In fact, over 3.5 billion people on our planet have anemia, and the World Bank estimates that it’s a $50 billion drain on the global GDP.

You can cure anemia with iron supplements—but they taste bad, and they often cause stomach pains, constipation, and even more disgusting problems.

So Charles had another idea: give villagers little blocks of iron to drop into their cooking pots. The iron gets released slowly as the water boils.

But at first, people hated them. They thought the iron blocks where ugly. They thought the iron blocks would scratch their pots. So they turned them into doorstops.

He kept trying. He needed a second idea: one that could make the first idea work.

He realized that in rural Cambodia almost everything revolves around fish. Fish from the Tonlé Sap provide Cambodians with 60% of their protein intake. People earn lots of their money fishing, they’re important in Khmer folklore. Even their currency—the riel—is named after a fish!

So, he made iron into “lucky fish” , shown here:

Now people are happy to put one into the pot when cooking.

One of those who has been using the fish is Sot Mot, a 60-year-old grandmother who lives just outside Phnom Penh. She drops the fish into boiling water as she chops up garlic, ginger and lemongrass for Khmer chicken soup. “Before, I felt tired and lazy and my chest shook when I was tired,” she says. “But after I use the fish, I have strength and energy to work and I sleep well, too.”

One of her grand-daughters seems to be improving, too. “Before, when I went to school I felt tired, and I didn’t do well at math, maybe the sixth in the class,” says 15-year-old Danai. “Now,” she says proudly, “I’m No. 1.”

Of course, this idea needs to be tested with scientific studies. And here’s one such study:

• Christopher V. Charles et al, Iron-deficiency anaemia in rural Cambodia: community trial of a novel iron supplementation technique, The European Journal of Public Health, 28 January 2010.

More studies are coming up.

No matter what the result finally is, it shows that paying attention to local culture can work wonders when trying to help people.

Large parts of this story are paraphrased from the following radio show, which is definitely worth listening to:

• Michael Sullivan, In Cambodia, ‘lucky’ iron fish in the pot could help fight anemia, Morning Edition, National Public Radio, 25 December 2015.


The Paris Agreement

23 December, 2015

The world has come together and agreed to do something significant about climate change:

• UN Framework Convention on Climate Change, Adoption of the Paris Agreement, 12 December 2015.

Not as much as I’d like: it’s estimated that if we do just what’s been agreed to so far, we can expect 2.7 °C of warming, and more pessimistic estimates range up to 3.5 °C. But still, something significant. Furthermore, the Paris Agreement set up a system that encourages nations to ‘ratchet up’ their actions over time. Even better, it helped strengthen a kind of worldwide social network of organizations devoted to tackling climate change!

This is a nice article summarizing what the Paris Agreement actually means:

• William Sweet, A surprising success at Paris, Bulletin of Atomic Scientists, 21 December 2015.

Since it would take quite a bit of work to analyze this agreement and its implications, and I’m just starting to do this work, I’ll just quote a large chunk of this article.

Hollande, in his welcoming remarks, asked what would enable us to say the Paris agreement is good, even “great.” First, regular review and assessment of commitments, to get the world on a credible path to keep global warming in the range of 1.5–2.0 degrees Celsius. Second, solidarity of response, so that no state does nothing and yet none is “left alone.” Third, evidence of a comprehensive change in human consciousness, allowing eventually for introduction of much stronger measures, such as a global carbon tax.

UN Secretary-General Ban Ki-moon articulated similar but somewhat more detailed criteria: The agreement must be lasting, dynamic, respectful of the balance between industrial and developing countries, and enforceable, with critical reviews of pledges even before 2020. Ban noted that 180 countries had now submitted climate action pledges, an unprecedented achievement, but stressed that those pledges need to be progressively strengthened over time.

Remarkably, not only the major conveners of the conference were speaking in essentially the same terms, but civil society as well. Starting with its first press conference on opening day and at every subsequent one, representatives of the Climate Action Network, representing 900 nongovernment organizations, confined themselves to making detailed and constructive suggestions about how key provisions of the agreement might be strengthened. Though CAN could not possibly speak for every single one of its member organizations, the mainstream within the network clearly saw it was the group’s goal to obtain the best possible agreement, not to advocate for a radically different kind of agreement. The mainstream would not be taking to the streets.

This was the main thing that made Paris different, not just from Copenhagen, but from every previous climate meeting: Before, there always had been deep philosophical differences between the United States and Europe, between the advanced industrial countries and the developing countries, and between the official diplomats and civil society. At Paris, it was immediately obvious that everybody, NGOs included, was reading from the same book. So it was obvious from day one that an important agreement would be reached. National delegations would stake out tough positions, and there would be some hard bargaining. But at every briefing and in every interview, no matter how emphatic the stand, it was made clear that compromises would be made and nothing would be allowed to stand in the way of agreement being reached.

The Paris outcome

The two-part agreement formally adopted in Paris on December 12 represents the culmination of a 25-year process that began with the negotiations in 1990–91 that led to the adoption in 1992 of the Rio Framework Convention. That treaty, which would be ratified by all the world’s nations, called upon every country to take action to prevent “dangerous climate change” on the basis of common but differentiated responsibilities. Having enunciated those principles, nations were unable to agree in the next decades about just what they meant in practice. An attempt at Kyoto in 1997 foundered on the opposition of the United States to an agreement that required no action on the part of the major emitters among the developing countries. A second attempt at agreement in Copenhagen also failed.

Only with the Paris accords, for the first time, have all the world’s nations agreed on a common approach that rebalances and redefines respective responsibilities, while further specifying what exactly is meant by dangerous climate change. Paragraph 17 of the “Decision” (or preamble) notes that national pledges will have to be strengthened in the next decades to keep global warming below 2 degrees Celsius or close to 1.5 degrees, while Article 2 of the more legally binding “Agreement” says warming should be held “well below” 2 degrees and if possible limited to 1.5 degrees. Article 4 of the Agreement calls upon those countries whose emissions are still rising to have them peak “as soon as possible,” so “as to achieve a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century”—a formulation that replaced a reference in Article 3 of the next-to-last draft calling for “carbon neutrality” by the second half of the century.

“The wheel of climate action turns slowly, but in Paris it has turned. This deal puts the fossil fuel industry on the wrong side of history,” commented Kumi Naidoo, executive director of Greenpeace International.

The Climate Action Network, in which Greenpeace is a leading member, along with organizations like the Union of Concerned Scientists, Friends of the Earth, the World Wildlife Fund, and Oxfam, would have preferred language that flatly adopted the 1.5 degree goal and that called for complete “decarbonization”— an end to all reliance on fossil fuels. But to the extent the network can be said have common positions, it would be able to live with the Paris formulations, to judge from many statements made by leading members in CAN’s twice- or thrice-daily press briefings, and statements made by network leaders embracing the agreement.

Speaking for scientists, at an event anticipating the final accords, H. J. Schellnhuber, leader of the Potsdam Institute for Climate Impact Research, said with a shrug that the formulation calling for net carbon neutrality by mid-century would be acceptable. His opinion carried more than the usual weight because he is sometimes credited in the German press as the father of the 2-degree standard. (Schellnhuber told me that a Potsdam team had indeed developed the idea of limiting global warming to 2 degrees in total and 0.2 degrees per decade; and that while others were working along similar lines, he personally drew the Potsdam work to the attention of future German chancellor Angela Merkel in 1994, when she was serving as environment minister.)

As for the tighter 1.5-degree standard, this is a complicated issue that the Paris accords fudge a bit. The difference between impacts expected from a 1.5-degree world and a 2-degree world are not trivial. The Greenland ice sheet, for example, is expected to melt in its entirely in the 2-degree scenario, while in a 1.5-degree world the odds of a complete melt are only 70 percent, points out climatologist Niklas Höhne, of the Cologne-based NewClimate Institute, with a distinct trace of irony. But at the same time the scientific consensus is that it would be virtually impossible to meet the 1.5-degree goal because on top of the 0.8–0.9 degrees of warming that already has occurred, another half-degree is already in the pipeline, “hidden away in the oceans,” as Schellnhuber put it. At best we might be able to work our ways back to 1.5 degrees in the 2030s or 2040s, after first overshooting it. Thus, though organizations like 350.org and scientists like James Hansen continue to insist that 1.5 degrees should be our objective, pure and simple, the scientific community and the Climate Action mainstream are reasonably comfortable with the Paris accords’ “close as possible” language.

‘Decision’ and ‘Agreement’

The main reason why the Paris accords consist of two parts, a long preamble called the “Decision,” and a legally binding part called the “Agreement,” is to satisfy the Obama administration’s concerns about having to take anything really sticky to Congress. The general idea, which was developed by the administration with a lot of expert legal advice from organizations like the Virginia-based Center for Climate and Energy Solutions, was to put really substantive matters, like how much the United States will actually do in the next decades to cut its greenhouse gas emissions, into the preamble, and to confine the treaty-like Agreement as much as possible to procedural issues like when in the future countries will talk about what.

Nevertheless, the distinction between the Decision and the Agreement is far from clear-cut. All the major issues that had to be balanced in the negotiations—not just the 1.5–2.0 degree target and the decarbonization language, but financial aid, adaptation and resilience, differentiation between rich and poor countries, reporting requirements, and review—are addressed in both parts. There is nothing unusual as such about an international agreement having two parts, a preamble and main text. What is a little odd about Paris, however, is that the preamble, at 19 pages, is considerably longer than the 11-page Agreement, as Chee Yoke Ling of the Third World Network, who is based in Beijing, pointed out. The length of the Decision, she explained, reflects not only US concerns about obtaining Senate ratification. It also arose from anxieties shared by developing countries about agreeing to legally binding provisions that might be hard to implement and politically dangerous.

In what are arguably the Paris accords’ most important provisions, the national pledges are to be collectively reassessed beginning in 2018–19, and then every five years after 2020. The general idea is to systematically exert peer group pressure on regularly scheduled occasions, so that everybody will ratchet up carbon-cutting ambitions. Those key requirements, which are very close to what CAN advocated and what diplomatic members of the so-called “high ambition” group wanted, are in the preamble, not the Agreement.

But an almost equally important provision, found in the Agreement, called for a global “stocktake” to be conducted in 2023, covering all aspects of the Agreement’s implementation, including its very contested provisions about financial aid and “loss and damage”—the question of support and compensation for countries and regions that may face extinction as a result of global warming. Not only carbon cutting efforts but obligations of the rich countries to the poor will be subject to the world’s scrutiny in 2023.

Rich and poor countries

On the critical issue of financial aid for developing countries struggling to reduce emissions and adapt to climate change, Paris affirms the Copenhagen promise of $100 billion by 2020 in the Decision (Paragraph 115) but not in the more binding Agreement—to the displeasure of the developing countries, no doubt. In the three previous draft versions of the accords, the $100 billion pledge was contained in the Agreement as well.

Somewhat similarly, the loss-and-damage language contained in the preamble does not include any reference to liability on the part of the advanced industrial countries that are primarily responsible for the climate change that has occurred up until now. This was a disappointment to representatives of the nations and regions most severely and imminently threatened by global warming, but any mention of liability would have been an absolute show-stopper for the US delegation. Still, the fact that loss and damage is broached at all represents a victory for the developing world and its advocates, who have been complaining for decades about the complete absence of the subject from the Rio convention and Kyoto Protocol.

The so-called Group of 77, which actually represents 134 developing countries plus China, appears to have played a shrewd and tough game here at Le Bourget. Its very able and engaging chairperson, South Africa’s Nozipho Mxakato-Diseko, sent a sharp shot across the prow of the rich countries on the third day of the conference, with a 17-point memorandum she e-mailed enumerating her group’s complaints.

“The G77 and China stresses that nothing under the [1992 Framework Convention] can be achieved without the provision of means of implementation to enable developing countries to play their part to address climate change,” she said, alluding to the fact that if developing countries are to do more to cut emissions growth, they need help. “However, clarity on the complete picture of the financial arrangements for the enhanced implementation of the Convention keeps on eluding us. … We hope that by elevating the importance of the finance discussions under the different bodies, we can ensure that the outcome meets Parties’ expectations and delivers what is required.”

Though the developing countries wanted stronger and more specific financial commitments and “loss-and-damage” provisions that would have included legal liability, there is evidence throughout the Paris Decision and Agreement of the industrial countries’ giving considerable ground to them. During the formal opening of the conference, President Obama met with leaders of AOSIS—the Alliance of Small Island States—and told them he understood their concerns as he, too, is “an island boy.” (Evidently that went over well.) The reference to the $100 billion floor for financial aid surely was removed from the Agreement partly because the White House at present cannot get Congress to appropriate money for any climate-related aid. But at least the commitment remained in the preamble, which was not a foregone conclusion.

Reporting and review

The one area in which the developing countries gave a lot of ground in Paris was in measuring, reporting, and verification. Under the terms of the Rio convention and Kyoto Protocol, only the advanced industrial countries—the so-called Annex 1 countries—were required to report their greenhouse gas emissions to the UN’s climate secretariat in Bonn. Extensive provisions in the Paris agreement call upon all countries to now report emissions, according to standardized procedures that are to be developed.

The climate pledges that almost all countries submitted to the UN in preparation for Paris, known as “Intended Nationally Determined Contributions,” provided a preview of what this will mean. The previous UN climate gathering, last year in Lima, had called for all the INDCs to be submitted by the summer and for the climate secretariat to do a net assessment of them by October 31, which seemed ridiculously late in the game. But when the results of that assessment were released, the secretariat’s head, Christiana Figueres, cited independent estimates that together the national declarations might put the world on a path to 2.7-degree warming. That result was a great deal better than most specialists following the procedure would have expected, this writer included. Though other estimates suggested the path might be more like 3.5 degrees, even this was a very great deal better than the business-as-usual path, which would be at least 4–5 degrees and probably higher than that by century’s end.

The formalized universal reporting requirements put into place by the Paris accords will lend a lot of rigor to the process of preparing, critiquing, and revising INDCs in the future. In effect the secretariat will be keeping score for the whole world, not just the Annex 1 countries. That kind of score-keeping can have a lot of bite, as we have witnessed in the secretariat’s assessment of Kyoto compliance.

Under the Kyoto Protocol, which the US government not only agreed to but virtually wrote, the United States was required to cut its emissions 7 percent by 2008–12, and Europe by 8 percent. From 1990, the baseline year established in the Rio treaty and its 1997 Kyoto Protocol, to 2012 (the final year in which initial Kyoto commitments applied), emissions of the 15 European countries that were party to the treaty decreased 17 percent—more than double what the protocol required of them. Emissions of the 28 countries that are now members of the EU decreased 21 percent. British emissions were down 27 percent in 2012 from 1990, and Germany’s were down 23 percent.

In the United States, which repudiated the protocol, emissions continued to rise until 2005, when they began to decrease, initially for reasons that had little or nothing to do with policy. That year, US emissions were about 15 percent above their 1990 level, while emissions of the 28 EU countries were down more than 9 percent and of the 15 European party countries more than 2 percent.


On Care For Our Common Home

19 June, 2015

There’s been a sea change on attitudes toward global warming in the last couple of years, which makes me feel much less need to determine the basic facts of the matter, or convince people of these facts. The challenge is now to do something.

Even the biggest European oil and gas companies are calling for a carbon tax! Their motives, of course, should be suspect. But they have realized it’s hopeless to argue about the basics. They wrote a letter to the United Nations beginning:

Dear Excellencies:

Climate change is a critical challenge for our world. As major companies from the oil & gas sector, we recognize both the importance of the climate challenge and the importance of energy to human life and well-being. We acknowledge that the current trend of greenhouse gas emissions is in excess of what the Intergovernmental Panel on Climate Change (IPCC) says is needed to limit the temperature rise to no more than 2 degrees above pre-industrial levels. The challenge is how to meet greater energy demand with less CO2. We stand ready to play our part.

It seems there are just a few places, mostly former British colonies, where questioning the reality and importance of man-made global warming is a popular stance among politicians. Unfortunately one of these, the United States, is a big carbon emitter. Otherwise we could just ignore these holdouts.

Given all this, it’s not so surprising that Pope Francis has joined the crowd and released a document on environmental issues:

• Pope Francis, Enyclical letter Laudato Si’: on care for our common home.

Still, it is interesting to read this document, because unlike most reports we read on climate change, it addresses the cultural and spiritual dimensions of this problem.

I believe arguments should be judged by their merits, not the fact that they’re made by someone with an impressive title like

His Holiness Francis, Bishop of Rome, Vicar of Jesus Christ, Successor of the Prince of the Apostles, Supreme Pontiff of the Universal Church, Primate of Italy, Archbishop and Metropolitan of the Roman Province, Sovereign of the Vatican City State, Servant of the servants of God.

(Note the hat-tip to Darwin there. )

But in fact Francis has some interesting things to say. And among all the reportage on this issue, it’s hard to find more than quick snippets of the actual 182-page document, which is actually quite interesting. So, let me quote a bit.

I will try to dodge the explicitly Christian bits, because I really don’t want people arguing about religion on this blog—in fact I won’t allow it. Of course discussing what the Pope says without getting into Christianity is very difficult and perhaps even absurd. But let’s try.

I will also skip the extensive section where he summarizes the science. It’s very readable, and for an audience who doesn’t want numbers and graphs it’s excellent. But I figure the audience of this blog already knows that material.

So, here are some of the passages I found most interesting.

St. Francis of Assisi

He discusses how St. Francis of Assisi has been an example to him, and says:

Francis helps us to see that an integral ecology calls for openness to categories which transcend the language of mathematics and biology, and take us to the heart of what it is to be human. Just as happens when we fall in love with someone, whenever he would gaze at the sun, the moon or the smallest of animals, he burst into song, drawing all other creatures into his praise.

[…]

If we approach nature and the environment without this openness to awe and wonder, if we no longer speak the language of fraternity and beauty in our relationship with the world, our attitude will be that of masters, consumers, ruthless exploiters, unable to set limits on their immediate needs. By contrast, if we feel intimately united with all that exists, then sobriety and care will well up spontaneously. The poverty and austerity of Saint Francis were no mere veneer of asceticism, but something much more radical: a refusal to turn reality into an object simply to be used and controlled.

Weak responses

On the responses to ecological problems thus far:

The problem is that we still lack the culture needed to confront this crisis. We lack leadership capable of striking out on new paths and meeting the needs of the present with concern for all and without prejudice towards coming generations. The establishment of a legal framework which can set clear boundaries and ensure the protection of ecosystems has become indispensable, otherwise the new power structures based on the techno-economic paradigm may overwhelm not only our politics but also freedom and justice.

It is remarkable how weak international political responses have been. The failure of global summits on the environment make it plain that our politics are subject to technology and finance. There are too many special interests, and economic interests easily end up trumping the common good and manipulating information so that their own plans will not be affected. The Aparecida Document urges that “the interests of economic groups which irrationally demolish sources of life should not prevail in dealing with natural resources”. The alliance between the economy and technology ends up sidelining anything unrelated to its immediate interests. Consequently the most one can expect is superficial rhetoric, sporadic acts of philanthropy and perfunctory expressions of concern for the environment, whereas any genuine attempt by groups within society to introduce change is viewed as a nuisance based on romantic illusions or an obstacle to be circumvented.

In some countries, there are positive examples of environmental improvement: rivers, polluted for decades, have been cleaned up; native woodlands have been restored; landscapes have been beautified thanks to environmental renewal projects; beautiful buildings have been erected; advances have been made in the production of non-polluting energy and in the improvement of public transportation. These achievements do not solve global problems, but they do show that men and women are still capable of intervening positively. For all our limitations, gestures of generosity, solidarity and care cannot but well up within us, since we were made for love.

At the same time we can note the rise of a false or superficial ecology which bolsters complacency and a cheerful recklessness. As often occurs in periods of deep crisis which require bold decisions, we are tempted to think that what is happening is not entirely clear. Superficially, apart from a few obvious signs of pollution and deterioration, things do not look that serious, and the planet could continue as it is for some time. Such evasiveness serves as a licence to carrying on with our present lifestyles and models of production and consumption. This is the way human beings contrive to feed their self-destructive vices: trying not to see them, trying not to acknowledge them, delaying the important decisions and pretending that nothing will happen.

On the risks:

It is foreseeable that, once certain resources have been depleted, the scene will be set for new wars, albeit under the guise of noble claims.

Everything is connected

He writes:

Everything is connected. Concern for the environment thus needs to be joined to a sincere love for our fellow human beings and an unwavering commitment to resolving the problems of society.

Moreover, when our hearts are authentically open to universal communion, this sense of fraternity excludes nothing and no one. It follows that our indifference or cruelty towards fellow creatures of this world sooner or later affects the treatment we mete out to other human beings. We have only one heart, and the same wretchedness which leads us to mistreat an animal will not be long in showing itself in our relationships
with other people. Every act of cruelty towards any creature is “contrary to human dignity”. We can hardly consider ourselves to be fully loving if we disregard any aspect of reality: “Peace, justice and the preservation of creation are three absolutely interconnected themes, which cannot be separated and treated individually without once again falling into reductionism”.

Technology: creativity and power

Technoscience, when well directed, can produce important means of improving the quality of human life, from useful domestic appliances to great transportation systems, bridges, buildings and public spaces. It can also produce art and enable men and women immersed in the material world to “leap” into the world of beauty. Who can deny the beauty of an aircraft or a skyscraper? Valuable works of art and music now make use of new technologies. So, in the beauty intended by the one who uses new technical instruments and in the contemplation of such beauty, a quantum leap occurs, resulting in a fulfilment which is uniquely human.

Yet it must also be recognized that nuclear energy, biotechnology, information technology, knowledge of our DNA, and many other abilities which we have acquired, have given us tremendous power. More precisely, they have given those with the knowledge, and especially the economic resources to use them, an impressive dominance over the whole of humanity and the entire world. Never has humanity had such power over itself, yet nothing ensures that it will be used wisely, particularly when we consider how it is currently being used. We need but think of the nuclear bombs dropped in the middle of the twentieth century, or the array of technology which Nazism, Communism and other totalitarian regimes have employed to kill millions of people, to say nothing of the increasingly deadly arsenal of weapons available for modern warfare. In whose hands does all this power lie, or will it eventually end up? It is extremely risky for a small part of humanity to have it.

The globalization of the technocratic paradigm

The basic problem goes even deeper: it is the way that humanity has taken up technology and its development according to an undifferentiated and one-dimensional paradigm. This paradigm exalts the concept of a subject who, using logical and rational procedures, progressively approaches and gains control over an external object. This subject makes every effort to establish the scientific and experimental method, which in itself is already a technique of possession, mastery and transformation. It is as if the subject were to find itself in the presence of something formless, completely open to manipulation. Men and women have constantly intervened in nature, but for a long time this meant being in tune with and respecting the possibilities offered by the things themselves. It was a matter of receiving what nature itself allowed, as if from its own hand. Now, by contrast, we are the ones to lay our hands on things, attempting to extract everything possible from them while frequently ignoring or forgetting the reality in front of us. Human beings and material objects no longer extend a friendly hand to one another; the relationship has become confrontational. This has made it easy to accept the idea of infinite or unlimited growth, which proves so attractive to economists, financiers and experts in technology. It is based on the lie that there is an infinite supply of the earth’s goods, and this leads to the planet being squeezed dry beyond every limit. It is the false notion that “an infinite quantity of energy and resources are available, that it is possible to renew them quickly, and that the negative effects of the exploitation of the natural order can be easily absorbed”.

The difficulty of changing course

The idea of promoting a different cultural paradigm and employing technology as a mere instrument is nowadays inconceivable. The technological paradigm has become so dominant that it would be difficult to do without its resources and even more difficult to utilize them without being dominated by their internal logic. It has become countercultural to choose a lifestyle whose goals are even partly independent of technology, of its costs and its power to globalize and make us all the same. Technology tends to absorb everything into its ironclad logic, and those who are surrounded with technology “know full well that it moves forward in the final analysis neither for profit nor for the well-being of the human race”, that “in the most radical sense of the term power is its motive – a lordship over all”. As a result, “man seizes hold of the naked elements of both nature and human nature”. Our capacity to make decisions, a more genuine freedom and the space for each one’s alternative creativity are diminished.

The technocratic paradigm also tends to dominate economic and political life. The economy accepts every advance in technology with a view to profit, without concern for its potentially negative impact on human beings. Finance overwhelms the real economy. The lessons of the global financial crisis have not been assimilated, and we are learning all too slowly the lessons of environmental deterioration. Some circles maintain that current economics and technology will solve all environmental problems, and argue, in popular and non-technical terms, that the problems of global hunger and poverty will be resolved simply by market growth. They are less concerned with certain economic theories which today scarcely anybody dares defend, than with their actual operation in the functioning of the economy. They may not affirm such theories with words, but nonetheless support them with their deeds by showing no interest in more balanced levels of production, a better distribution of wealth, concern for the environment and the rights of future generations. Their behaviour shows that for them maximizing profits is enough.

Toward an ecological culture

Ecological culture cannot be reduced to a series of urgent and partial responses to the immediate problems of pollution, environmental decay and the depletion of natural resources. There needs to be a distinctive way of looking at things, a way of thinking, policies, an educational programme, a lifestyle and a spirituality which together generate resistance to the assault of the technocratic paradigm. Otherwise, even the best ecological initiatives can find themselves caught up in the same globalized logic. To seek only a technical remedy to each environmental problem which comes up is to separate what is in reality interconnected and to mask the true and deepest problems of the global system.

Yet we can once more broaden our vision. We have the freedom needed to limit and direct technology; we can put it at the service of another type of progress, one which is healthier, more human, more social, more integral. Liberation from the dominant technocratic paradigm does in fact happen sometimes, for example, when cooperatives of small producers adopt less polluting means of production, and opt for a non-consumerist model of life, recreation and community. Or when technology is directed primarily to resolving people’s concrete problems, truly helping them live with more dignity and less suffering. Or indeed when the desire to create and contemplate beauty manages to overcome reductionism through a kind of salvation which occurs in beauty and in those who behold it. An authentic humanity, calling for a new synthesis, seems to dwell in the midst of our technological culture, almost unnoticed, like a mist seeping gently beneath a closed door. Will the promise last, in spite of everything, with all that is authentic rising up in stubborn resistance?

Integral ecology

Near the end he calls the for the development of an ‘integral ecology’. I find it fascinating that this has something in common with ‘network theory’:

Since everything is closely interrelated, and today’s problems call for a vision capable of taking into account every aspect of the global crisis, I suggest that we now consider some elements of an integral ecology, one which clearly respects its human and social dimensions.

Ecology studies the relationship between living organisms and the environment in which they develop. This necessarily entails reflection and debate about the conditions required for the life and survival of society, and the honesty needed to question certain models of development, production and consumption. It cannot be emphasized enough how everything is interconnected. Time and space are not independent of one another, and not even atoms or subatomic particles can be considered in isolation. Just as the different aspects of the planet—physical, chemical and biological—are interrelated, so too living species are part of a network which we will never fully explore and understand. A good part of our genetic code is shared by many living beings. It follows that the fragmentation of knowledge and the isolation of bits of information can actually become a form of ignorance, unless they are integrated into a broader vision of reality.

When we speak of the “environment”, what we really mean is a relationship existing between nature and the society which lives in it. Nature cannot be regarded as something separate from ourselves or as a mere setting in which we live. We are part of nature, included in it and thus in constant interaction with it. Recognizing the reasons why a given area is polluted requires a study of the workings of society, its economy, its behaviour patterns, and the ways it grasps reality. Given the scale of change, it is no longer possible to find a specific, discrete answer for each part of the problem. It is essential to seek comprehensive solutions which consider the interactions within natural systems themselves and with social systems. We are faced not with two separate crises, one environmental and the other social, but rather with one complex crisis which is both social and environmental. Strategies for a solution demand an integrated approach to combating poverty, restoring dignity to the excluded, and at the same time protecting nature.

Due to the number and variety of factors to be taken into account when determining the environmental impact of a concrete undertaking, it is essential to give researchers their due role, to facilitate their interaction, and to ensure broad academic freedom. Ongoing research should also give us a better understanding of how different creatures relate to one another in making up the larger units which today we term “ecosystems”. We take these systems into account not only to determine how best to use them, but also because they have an intrinsic value independent of their usefulness.

Ecological education

He concludes by discussing the need for ‘ecological education’.

Environmental education has broadened its goals. Whereas in the beginning it was mainly centred on scientific information, consciousness-raising and the prevention of environmental risks, it tends now to include a critique of the “myths” of a modernity grounded in a utilitarian mindset (individualism, unlimited progress, competition, consumerism, the unregulated market). It seeks also to restore the various levels of ecological equilibrium, establishing harmony within ourselves, with others, with nature and other living creatures, and with God. Environmental education should facilitate making the leap towards the transcendent which gives ecological ethics its deepest meaning. It needs educators capable of developing an ethics of ecology, and helping people, through effective pedagogy, to grow in solidarity, responsibility and compassionate care.

Even small good practices can encourage new attitudes:

Education in environmental responsibility can encourage ways of acting which directly and significantly affect the world around us, such as avoiding the use of plastic and paper, reducing water consumption, separating refuse, cooking only what can reasonably be consumed, showing care for other living beings, using public transport or car-pooling, planting trees, turning off unnecessary lights, or any number of other practices. All of these reflect a generous and worthy creativity which brings out the best in human beings. Reusing something instead of immediately discarding it, when done for the right reasons, can be an act of love which expresses our own dignity.

We must not think that these efforts are not going to change the world. They benefit society, often unbeknown to us, for they call forth a goodness which, albeit unseen, inevitably tends to spread. Furthermore, such actions can restore our sense of self-esteem; they can enable us to live more fully and to feel that life on earth is worthwhile.

Part of the goal is to be more closely attentive to what we have, not fooled into thinking we’d always be happier with more:

It is a return to that simplicity which allows us to stop and appreciate the small things, to be grateful for the opportunities which life affords us, to be spiritually detached from what we possess, and not to succumb to sadness for what we lack. This implies avoiding the dynamic of dominion and the mere accumulation of pleasures.

Such sobriety, when lived freely and consciously, is liberating. It is not a lesser life or one lived with less intensity. On the contrary, it is a way of living life to the full. In reality, those who enjoy more and live better each moment are those who have given up dipping here and there, always on the look-out for what they do not have. They experience what it means to appreciate each person and each thing, learning familiarity with the simplest things and how to enjoy them. So they are able to shed unsatisfied needs, reducing their obsessiveness and weariness. Even living on little, they can live a lot, above all when they cultivate other pleasures and find satisfaction in fraternal encounters, in service, in developing their gifts, in music and art, in contact with nature, in prayer. Happiness means knowing how to limit some needs which only diminish us, and being open to the many different possibilities which life can offer.


Why Google Gave Up

5 January, 2015

I was disappointed when Google gave up. In 2007, the company announced a bold initiative to fight global warming:

Google’s Goal: Renewable Energy Cheaper than Coal

Creates renewable energy R&D group and supports breakthrough technologies

Mountain View, Calif. (November 27, 2007) – Google (NASDAQ: GOOG) today announced a new strategic initiative to develop electricity from renewable energy sources that will be cheaper than electricity produced from coal. The newly created initiative, known as RE<C, will focus initially on advanced solar thermal power, wind power technologies, enhanced geothermal systems and other potential breakthrough technologies. RE<C is hiring engineers and energy experts to lead its research and development work, which will begin with a significant effort on solar thermal technology, and will also investigate enhanced geothermal systems and other areas. In 2008, Google expects to spend tens of millions on research and development and related investments in renewable energy. As part of its capital planning process, the company also anticipates investing hundreds of millions of dollars in breakthrough renewable energy projects which generate positive returns.

But in 2011, Google shut down the program. I never heard why. Recently two engineers involved in the project have given a good explanation:

• Ross Koningstein and David Fork, What it would really take to reverse climate change, 18 November 2014.

Please read it!

But the short version is this. They couldn’t find a way to accomplish their goal: producing a gigawatt of renewable power more cheaply than a coal-fired plant — and in years, not decades.

And since then, they’ve been reflecting on their failure and they’ve realized something even more sobering. Even if they’d been able to realize their best-case scenario — a 55% carbon emissions cut by 2050 — it would not bring atmospheric CO2 back below 350 ppm during this century.

This is not surprising to me.

What would we need to accomplish this? They say two things. First, a cheap dispatchable, distributed power source:

Consider an average U.S. coal or natural gas plant that has been in service for decades; its cost of electricity generation is about 4 to 6 U.S. cents per kilowatt-hour. Now imagine what it would take for the utility company that owns that plant to decide to shutter it and build a replacement plant using a zero-carbon energy source. The owner would have to factor in the capital investment for construction and continued costs of operation and maintenance—and still make a profit while generating electricity for less than $0.04/kWh to $0.06/kWh.

That’s a tough target to meet. But that’s not the whole story. Although the electricity from a giant coal plant is physically indistinguishable from the electricity from a rooftop solar panel, the value of generated electricity varies. In the marketplace, utility companies pay different prices for electricity, depending on how easily it can be supplied to reliably meet local demand.

“Dispatchable” power, which can be ramped up and down quickly, fetches the highest market price. Distributed power, generated close to the electricity meter, can also be worth more, as it avoids the costs and losses associated with transmission and distribution. Residential customers in the contiguous United States pay from $0.09/kWh to $0.20/kWh, a significant portion of which pays for transmission and distribution costs. And here we see an opportunity for change. A distributed, dispatchable power source could prompt a switchover if it could undercut those end-user prices, selling electricity for less than $0.09/kWh to $0.20/kWh in local marketplaces. At such prices, the zero-carbon system would simply be the thrifty choice.

But “dispatchable”, they say, means “not solar”.

Second, a lot of carbon sequestration:

While this energy revolution is taking place, another field needs to progress as well. As Hansen has shown, if all power plants and industrial facilities switch over to zero-carbon energy sources right now, we’ll still be left with a ruinous amount of CO2 in the atmosphere. It would take centuries for atmospheric levels to return to normal, which means centuries of warming and instability. To bring levels down below the safety threshold, Hansen’s models show that we must not only cease emitting CO2 as soon as possible but also actively remove the gas from the air and store the carbon in a stable form. Hansen suggests reforestation as a carbon sink. We’re all for more trees, and we also exhort scientists and engineers to seek disruptive technologies in carbon storage.

How to achieve these two goals? They say government and energy businesses should spend 10% of employee time on “strange new ideas that have the potential to be truly disruptive”.


Finding and Solving Problems

18 February, 2014

Luke Muelhauser, executive director of the Machine Intelligence Research Insitute, has been doing some interviews:

Scott Aaronson on philosophical progress.

Greg Morrisett on secure and reliable systems.

Robin Hanson on serious futurism.

Recently he interviewed me. Here’s how it went.

LM: In a previous interview, I asked Scott Aaronson which “object-level research tactics” he finds helpful when trying to make progress in theoretical research, and I provided some examples. Do you have any comments on the research tactics that Scott and I listed? Which recommended tactics of your own would you add to the list?

JB: What do you mean by “object-level” research tactics? I’ve got dozens of tactics. Some of them are ways to solve problems. But equally important, or maybe more so, are tactics for coming up with problems to solve: problems that are interesting but still easy enough to solve. By “object-level”, do you mean the former?

LM: Both! Conceiving of—and crisply posing—good research problems can often be even more important than solving previously-identified research problems.

JB: Okay. Here are some of my tactics.

(1) Learn a lot. Try to understand how the whole universe works, from the philosophical, logical, mathematical and physical aspects to chemistry, biology, and the sciences based on those, to the historical sciences such as cosmology, paleontology, archaeology and history, to the social sciences such as psychology, sociology, anthropology, politics and economics, to the aspects that are captured best in literature, art and music.

It’s a never-ending quest, and obviously it pays to specialize and become more of an expert on a few things – but the more angles you can take on any subject, the more likely you are to stumble on good questions or good answers to existing questions. Also, when you get stuck on a problem, or get tired, it can be really re-energizing to learn new things.

(2) Keep synthesizing what you learn into terser, clearer formulations. The goal of learning is not to memorize vast amounts of data. You need to do serious data compression, and filter out the noise. Very often people will explain things to you in crappy ways, presenting special cases and not mentioning the general rules, stating general rules incorrectly, and so on.

This process goes on forever. When you first learn algebraic topology, for example, they teach you. homology theory. At the beginner’s level, this is presented as a rather complicated recipe for taking a topological space and getting a list of groups out of it. By looking at examples you get insight into what these groups do: the nth one counts the n-dimensional holes, in some sense. You learn how to use them to solve problems, and how to efficiently compute them.

But later—much later, in my case—you learn that algebraic topology of this sort not really about topological spaces, but something more abstract, called “homotopy types”. This is a discovery that happened rather slowly. It crystallized around the 1968, when a guy named Quillen wrote a book on “homotopical algebra”. It’s always fascinating when this happens: when people in some subject learn that its proper object of study is not what they had thought!

But even this was just the beginning: a lot has happened in math since the 1960s. Shortly thereafter, Grothendieck came along and gave us a new dream of what homotopy types might actually be. Very roughly, he realized that they should show up naturally if we think of “equality” as a process—the process of proving two thing are the same—rather than a static relationship.

I’m being pretty vague here, but I want to emphasize that this was a very fundamental discovery with widespread consequences, not a narrow technical thing.

For a long time people have struggled to make Grothendieck’s dream precise. I was involved in that myself for a while. But in the last 5 years or so, a guy named Voevodsky made a lot of progress by showing us how to redo the foundations of mathematics so that instead of treating equality as a mere relationship, it’s a kind of process. This new approach gives an alternative to set theory, where we use homotopy types right from the start as the basic objects of mathematics, instead of sets. It will take about a century for the effects of this discovery to percolate through all of math.

So, you see, by taking something important but rather technical, like algebraic topology, and refusing to be content with treating it as a bunch of recipes to be memorized, you can dig down into deep truths. But it takes great persistence. Even if you don’t discover these truths yourself, but merely learn them, you have to keep simplifying and unifying.

(3) Look for problems, not within disciplines, but in the gaps between existing disciplines. The division of knowledge into disciplines is somewhat arbitrary, and people put most of their energy into questions that lie squarely within disciplines, so it shouldn’t be surprising that many interesting things are lurking in the gaps, waiting to be discovered.

At this point, tactics (1) and (2) really come in handy. If you study lots of subjects and keep trying to distill their insights into terse, powerful formulations, you’re going to start noticing points of contact between these subjects. Sometimes these will be analogies that deserve to be made precise. Sometimes people in one subject know a trick that people in some other subject could profit from. Sometimes people in one subject have invented the hammer, and people in another have invented the nail—and neither know what these things are good for!

(4) Talk to lots of people. This is a great way to broaden your vistas and find connections between seemingly different subjects.

Talk to the smartest people who will condescend to talk to you. Don’t be afraid to ask them questions. But don’t bore them. Smart people tend to be easily bored. Try to let them talk about what’s interesting to them, instead of showing off and forcing them to listen to your brilliant ideas. But make sure to bring them some “gifts” so they’ll want to talk to you again. “Gifts” include clear explanations of things they don’t understand, and surprising facts—little nuggets of knowledge.

One of my strategies for this was to write This Week’s Finds, explaining lots of advanced math and physics. You could say that column is a big pile of gifts. I started out as a nobody, but after ten years or so, lots of smart people had found out about me. So now it’s pretty easy for me to blunder into any subject, write a blog post about it, and get experts to correct me or tell me more. I also get invited to give talks, where I meet lots of smart people.

LM: You’ve explained some tactics for how to come up with problems to solve. Once you generate a good list, how do you choose among them?

JB: Here are two bits of advice on that.

(1) Actually write down lists of problems.

When I was just getting started, I had a small stock of problems to think about – so small that I could remember most of them. Many were problems I’d heard from other people, but most of those were too hard. I would also generate my own problems, but they were often either too hard, too vague, or too trivial.

In more recent years I’ve been able to build up a huge supply of problems to think about. This means I need to actually list them. Often I generate these lists using the ‘data compression’ tactic I mentioned in part (2) of my last answer. When I learn stuff, I ask:

• Is this apparently new concept or fact a special case of some concept or fact I already know?

• Given two similar-sounding concepts or facts, can I find a third having both of these as special cases?

• Can I use the analogy between X and Y to do something new in subject Y that’s analogous to something people have already done in subject X?

• Given a rough ‘rule of thumb’, can I state it more precisely so that it holds always, or at least more often?

as well as plenty of more specific questions.

So, instead of being ‘idea-poor’, with very few problems to work on, I’m now ‘idea-rich’, and the challenge is keeping track of all the problems and finding the best ones.

I always carry around a notebook. I write down questions that seem interesting, especially when I’m bored. The mere act of writing them down either makes them less vague or reveals them to be hopelessly fuzzy. Sometimes I can solve a problem just by taking the time to state it precisely. And the act of writing down questions naturally triggers more questions.

Besides questions, I like ‘analogy charts’, consisting of two or more columns with analogous items lined up side by side. You can see one near the bottom of my 2nd article on quantropy. Quantropy is an idea born of the analogy between thermodynamics and quantum mechanics. This is a big famous analogy, which I’d known for decades, but writing down an analogy chart made me realize there was a hole in the analogy. In thermodynamics we have entropy, so what’s the analogous thing in quantum mechanics? It turns out there’s an answer: quantropy.

I later wrote a paper with Blake Pollard on quantropy, but I gave a link to the blog article because that’s another aspect of how I keep track of questions. I don’t just write lists for myself—I write blog articles about things that I want to understand better.

(2) Only work on problems when you think they’re important and you see how to solve them.

This tactic isn’t for everyone, but it works for me. When I was just getting started I would try to solve problems that I had no idea how to solve. People who are good at puzzles may succeed this way, but I generally did not.

It turns out that for me, a better approach is to make long lists of questions, and keep thinking about them on and off for many years. I slowly make progress until—poof!—I think I see something new and important. Only then do a take a problem off the back burner and start intensely working on it.

The physicist John Wheeler put it this way: you should never do a calculation until you already know the answer. That’s a bit of an exaggeration, because it’s also good to fool around and see where things go. But there’s a lot more truth to it than you might think.

Feynman had a different but related rule of thumb: he only worked on a problem when he felt he had an “inside track” on it—some insight or trick up his sleeve that nobody else had.

LM: And once you’ve chosen a problem to solve, what are some of your preferred tactics for actually solving it?

JB: By what I’ve said before, it’s clear that I get serious about a problem only after I have a darn good idea of how to solve it. At the very least, I believe I know what to do. So, I just do it.

But usually it doesn’t work quite that easily.

If you only officially tackle problems after absolutely every wrinkle has been ironed out by your previous musings, you’re being too cautious: you’ll miss working on a lot of interesting things. Many young researchers seem to fall prey to the opposite error, and waste time being completely stuck. The right balance lies in the middle. You break a problem down into sub-problems, and break those down into sub-subproblems… and you decide you’re ready to go when all these sub-subproblems seem likely to be doable, even before you’ve worked through the details.

How can you tell if they’re doable? This depends a lot on having previous experience with similar problems. If you’re a newbie, things that seem hard to you can be really easy to experts, while things that seem easy can turn out to be famously difficult.

Even with experience, some of sub-subproblems that seem likely to be routine will turn out to be harder than expected. That’s where the actual work comes in. And here it’s good to have lots of tricks. For example:

(1) If you can’t solve a problem, there should be a similar problem that’s a bit easier. Try solving that. And if you can’t solve that one… use the same principle again! Keep repeating until you get down to something you can solve. Then climb your way back up, one step at a time.

Don’t be embarrassed to simplify a problem to the point where you can actually do it.

(2) There are lots of ways to make a problem easier. Sometimes you should consider a special case. In math there are special cases of special cases of special cases… so there’s a lot of room for exploration here. If you see how enough special cases work, you’ll get ideas that may help you for your original problem.

(3) On the other hand, sometimes a problem becomes simpler when you generalize, leaving out potentially irrelevant details. Often people get stuck in clutter. But if it turns out the generalization doesn’t work, it may help you see which details were actually relevant.

(4) Sometimes instead of down or up the ladder of generality it pays to move across, by considering an analogous problem in a related field.

(5) Finally, a general hint: keep a written record of your efforts to solve a problem, including explanations of what didn’t work, and why. Look back at what you wrote from time to time. It’s amazing how often I come close to doing something right, forget about it, and come back later—sometimes years later—and see things from a slightly different angle, which makes everything fall into place. Failure can be just millimeters from success.


Global Climate Change Negotiations

28 October, 2013

 

There were many interesting talks at the Interdisciplinary Climate Change Workshop last week—too many for me to describe them all in detail. But I really must describe the talks by Radoslav Dimitrov. They were full of important things I didn’t know. Some are quite promising.

Radoslav S. Dimitrov is a professor at the Department of Political Science at Western University. What’s interesting is that he’s also been a delegate for the European Union at the UN climate change negotiations since 1990! His work documents the history of climate negotiations from behind closed doors.

Here are some things he said:

• In international diplomacy, there is no questioning the reality and importance of human-caused climate change. The question is just what to do about it.

• Governments go through every line of the IPCC reports twice. They cannot add anything the scientists have written, but they can delete things. All governments have veto power. This makes the the IPCC reports more conservative than they otherwise would be: “considerably diluted”.

• The climate change negotiations have surprised political scientists in many ways:

1) There is substantial cooperation even without the USA taking the lead.

2) Developing countries are accepting obligations, with many overcomplying.

3) There has been action by many countries and subnational entities without any treaty obligations.

4) There have been repeated failures of negotiation despite policy readiness.

• In 2011, China and Saudi Arabia rejected the final agreement at Durban as inadequate. Only Canada, the United States and Australia had been resisting stronger action on climate change. Canada abandoned the Kyoto Protocol the day after the collapse of negotiations at Durban. They publicly blamed China, India and Brazil, even though Brazil had accepted dramatic emissions cuts and China had, for the first time, accepted limits on emissions. Only India had taken a “hardline” attitude. Publicly blaming some other country for the collapse of negotiations is a no-no in diplomacy, so the Chinese took this move by Canada as a slap in the face. In return, they blamed Canada and “the West” for the collapse of Durban.

• Dimitrov is studying the role of persuasion in diplomacy, recording and analyzing hundreds of hours of discussions. Countries try to change each other’s minds, not just behavior.

• The global elite do not see climate change negotiations as an environmental issue. Instead, they feel they are “negotiating the future economy”. They focus on the negative economic consequences of inaction, and the economic benefits of climate action.

• In particular, the EU has managed to persuade many countries that climate change is worth tackling now. They do this with economic, not environmental arguments. For example, they argue that countries who take the initiative will have an advantage in future employment, getting most of the “green jobs”. Results include China’s latest 5-year plan, which some have called “the most progressive legislation in history”, and also Japan’s plan for a 60-80% reduction of carbon emissions. The EU itself also expects big returns on investment in climate change.

I apologize for any oversimplifications or downright errors in my notes here.

References

You can see some slides for Dimitrov’s talks here:

• Radoslav S. Dimitrov, A climate of change.

For more, try reading this article, which is free online:

• Radoslav S. Dimitrov, Inside Copenhagen: the state of climate governance, Global Environmental Politics 10 (2010), 18–24.

and these more recent book chapters, which are apparently not as easy to get:

• Radoslav S. Dimitrov, Environmental diplomacy, in Handbook of Global Environmental Politics, edited by Paul Harris, Routledge, forthcoming as of 2013.

• Radoslav S. Dimitrov, International negotiations, in Handbook of Global Climate and Environmental Policy, edited by Robert Falkner, Wiley-Blackwell forthcoming as of 2013.

• Radoslav S. Dimitrov, Persuasion in world politics: The UN climate change negotiations, in Handbook of Global Environmental Politics, edited by Peter Dauvergne, Edward Elgar Publishing, Cheltenham, UK, 2012.

• Radoslav S. Dimitrov, American prosperity and the high politics of climate change, in Prospects for a Post-American World, edited by Sabrina Hoque and Sean Clark, University of Toronto Press, Toronto, 2012.


Follow

Get every new post delivered to your Inbox.

Join 3,148 other followers