Mathematics for Humanity

26 January, 2023

We discussed this here earlier, but now it’s actually happening!

The International Centre for Mathematical Sciences, or ICMS, in Edinburgh, will host a new project entitled ‘Mathematics for Humanity’. This will be devoted to education, research, and scholarly exchange having direct relevance to the ways in which mathematics can contribute to the betterment of humanity. Submitted proposals are due on June 1st, 2023.

The activities of the program will revolve around three interrelated themes:

A. Integrating the global research community (GRC)

B. Mathematical challenges for humanity (MCH)

C. Global history of mathematics (GHM)

Development of the three themes will facilitate the engagement of the international mathematical community with the challenges of accessible education, knowledge-driven activism, and transformative scholarship.

For theme A, a coherent plan of activities for an extended period can be presented (at least 2 weeks, and up to to 3 months), comprising courses and seminars bringing together researchers from at least two different regions, which should be combined with networking activities and hybrid dissemination. Themes B and C would also comprise individual collaborative events.

Within each of the three themes, researchers can apply for one of the following activities:

  1. Research-in-groups. This is a proposal for a small group of 3 to 6 researchers to spend from 2 weeks to 3 months in Edinburgh on a reasonably well-defined research project. The researchers will be provided working space and funds for accommodation and subsistence.
  2. Research course or seminar. A group of researchers can propose a course or a seminar on topics relevant to one of the three themes. These should be planned as hybrid events with regular meetings in Edinburgh that can also be accessed online. Proposals should come with a detailed plan for attracting interest and for the dissemination of ideas.

  3. Research workshops. These are 5-day workshops in the standard ICMS format, of course with a focus on one of the three themes.

  4. Research school. These are hybrid schools of two-weeks length on one of the themes. These should come with substantial planning, a coherent structure, and be aimed towards post-graduate students and early career researchers.

The ICMS expects that up to 30 researchers will be in residence in Edinburgh at any given time over a 9-month period, which might be divided into three terms, mid-September to mid-December, mid-January to mid-April, and mid-April to mid-July. Every effort will be made to provide a unified facility for the activities of all groups working on all three themes, thereby encouraging a synergistic exchange of ideas and vision. The proposals will be reviewed twice a year soon after the spring deadline of 15 April and the autumn deadline of 15 November.

Project Summary

Submission Guidelines

Scientific Committee

Queries about the project should be sent to ICMS director Minhyong Kim or deputy director Beatrice Pelloni, who will be aided by the Scientific Committee in the selection of proposals:

John Baez (UC Riverside)                            • Karine Chemla (Paris)

Sophie Dabo-Niang (Lille)                           • Reviel Netz (Stanford)

Bao Chau Ngo (Chicago and VIASM)            • Raman Parimala (Emory)

Fernando Rodriguez Villegas (ICTP, Trieste)  • Terence Tao (UCLA)


Mathematics for Humanity: a Plan

27 November, 2022

I’m working with an organization that may eventually fund proposals to fund workshops for research groups working on “mathematics for humanity”. This would include math related to climate change, health, democracy, economics, AI, etc.

I can’t give details unless and until it solidifies.

However, it would help me to know a bunch of possible good proposals. Can you help me imagine some?

A good proposal needs:

• a clearly well-defined subject where mathematics is already helping humanity but could help more, together with

• a specific group of people who already have a track record of doing good work on this subject, and

• some evidence that having a workshop, maybe as long as 3 months, bringing together this group and other people, would help them do good things.

I’m saying this because I don’t want vague ideas like “oh it would be cool if a bunch of category theorists could figure out how to make social media better”.

I asked for suggestions on Mathstodon and got these so far:

figuring out how to better communicate risks and other statistical information,

developing ways to measure and combat gerrymandering,

improving machine learning to get more reliable, safe and clearly understandable systems,

studying tipping points and ‘tipping elements’ in the Earth’s climate system,

creating higher-quality open-access climate simulation software,

using operations research to disrupt human trafficking.

Each topic already has people already working on it, so these are good examples. Can you think of more, and point me to groups of people working on these things?


The International Centre for Mathematical Sciences is indeed going ahead with this plan! Read more about it here:

Mathematics for Humanity.


The Economics of Biodiversity

24 February, 2021

 

One problem with the Anthropocene is that our economic systems undervalue forms of “natural capital” for which there are no markets, or poorly developed markets. I’m talking about things like clean air, forests, wetlands, oceans… and biodiversity. For many of these things the price is zero or even negative, due to government subsidies.

So, we’ll burn through these things recklessly until the ensuing disasters wake us up. We’re like a family trying to earn more cash by selling off the windows and doors of our house. It may work for a while. But winter is coming.

Partha Dasgupta, an economist at the the University of Cambridge, has been studying this. In 2019, the UK government commissioned him to lead an independent, global review of the economics of biodiversity. It came out this month at an event hosted by the Royal Society and attended by the Prince of Wales, Boris Johnson and David Attenborough. Here it is:

The Economics of Biodiversity: The Dasgupta Review.

The full report is 610 pages long. It’s very clear; I’m reading it and will say more about it here. There’s also a 103-page version and a 10-page ‘headline’ version, but the headlines leave out the really fun stuff: the economic analyses, the differential equations, and so on.

This came out at a good time for me, because I’ve recently been asked to give a talk about the economics of the Anthropocene. I seem to have reached the age where people ask me to give talks about practically anything I’ve ever blogged about. I need a lot of help on the economics, since I have intuitions but no framework to organize them. The Dasgupta Review provides a framework, and since I don’t have a lot of time before my talk, I plan to lean on it rather heavily.

Here’s the introduction, by David Attenborough. It’s easy to read. But it does not get into any of the economics, so please don’t judge the cake by its frosting.

We are facing a global crisis. We are totally dependent upon the natural world. It supplies us with every oxygen-laden breath we take and every mouthful of food we eat. But we are currently damaging it so profoundly that many of its natural systems are now on the verge of breakdown.

Every other animal living on this planet, of course, is similarly dependent. But in one crucial way, we are different. We can change not just the numbers, but the very anatomy of the animals and plants that live around us. We acquired that ability, doubtless almost unconsciously, some ten thousand years ago, when we had ceased wandering and built settlements for ourselves. It was then that we started to modify other animals and plants.

At first, doubtless, we did so unintentionally. We collected the kinds of seeds that we wanted to eat and took them back to our houses. Some doubtless fell to the ground and sprouted the following season. So over generations, we became farmers. We domesticated animals in a similar way. We brought back the young of those we had hunted, reared them in our settlements and ultimately bred them there. Over many generations, this changed both the bodies and ultimately the characters of the animals on which we depend.

We are now so mechanically ingenious that we are able to destroy a rainforest, the most species-rich ecosystem that has ever existed, and replace it with plantations of a single species in order to feed burgeoning human populations on the other side of the world. No single species in the whole history of life has ever been so successful or so dominant.

Now we are plundering every corner of the world, apparently neither knowing or caring what the consequences might be. Each nation is doing so within its own territories. Those with lands bordering the sea fish not only in their offshore waters but in parts of the ocean so far from land that no single nation can claim them. So now we are stripping every part of both the land and the sea in order to feed our ever-increasing numbers.

How has the natural world managed to survive this unrelenting ever-increasing onslaught by a single species? The answer of course, is that many animals have not been able to do so. When Europeans first arrived in southern Africa they found immense herds of antelope and zebra. These are now gone and vast cities stand in their stead. In North America, the passenger pigeon once flourished in such vast flocks that when they migrated, they darkened the skies from horizon to horizon and took days to pass. So they were hunted without restraint. Today, that species is extinct. Many others that lived in less dramatic and visible ways simply disappeared without the knowledge of most people worldwide and were mourned only by a few naturalists.

Nonetheless, in spite of these assaults, the biodiversity of the world is still immense. And therein lies the strength that has enabled much of its wildlife to survive until now. Economists understand the wisdom of spreading their investments across a wide range of activities. It enables them to withstand disasters that may strike any one particular asset. The same is true in the natural world. If conditions change, either climatically or as a consequence of a new development in the never-ending competition between species, the ecosystem as a whole is able to maintain its vigour.

But consider the following facts. Today, we ourselves, together with the livestock we rear for food, constitute 96% of the mass of all mammals on the planet. Only 4% is everything else – from elephants to badgers, from moose to monkeys. And 70% of all birds alive at this moment are poultry – mostly chickens for us to eat. We are destroying biodiversity, the very characteristic that until recently enabled the natural world to flourish so abundantly. If we continue this damage, whole ecosystems will collapse. That is now a real risk.

Putting things right will take collaborative action by every nation on earth. It will require international agreements to change our ways. Each ecosystem has its own vulnerabilities and requires its own solutions. There has to be a universally shared understanding of how these systems work, and how those that have been damaged can be brought back to health.

This comprehensive, detailed and immensely important report is grounded in that understanding. It explains how we have come to create these problems and the actions we must take to solve them. It then provides a map for navigating a path towards the restoration of our planet’s biodiversity.
Economics is a discipline that shapes decisions of the utmost consequence, and so matters to us all. The Dasgupta Review at last puts biodiversity at its core and provides the compass that we urgently need. In doing so, it shows us how, by bringing economics and ecology together, we can help save the natural world at what may be the last minute – and in doing so, save ourselves.


Geoengineering – The Tipping Point

10 February, 2021

Back in 2013 I wrote about how we are approaching a tipping point, where public opinion on geoengineering suddenly starts to shift:

Many express the fear that merely researching geoengineering schemes will automatically legitimate them, however hare-brained they are. There’s some merit to that fear. But I suspect that public opinion on geoengineering will suddenly tip from “unthinkable!” to “let’s do it now!” as soon as global warming becomes perceived as a real and present threat. This is especially true because oil, coal and gas companies have a big interest in finding solutions to global warming that don’t make them stop digging.

I argued that because of this, we need to start thinking hard about the issues now.

I think we should start serious research on geoengineering schemes, including actual experiments, not just calculations and simulations. I think we should do this with an open mind about whether we’ll decide that these schemes are good ideas or bad. Either way, we need to learn more about them. Simultaneously, we need an intelligent, well-informed debate about the many ethical, legal and political aspects.

I think this tipping point is getting very close now: close enough to be discussed in popular media. Like this:

• Ezra Klein, Should we dim the Sun? Will we even have a choice?, New York Times, 9 February 2021.

This is Ezra Klein interviewing Elizabeth Kolbert, author of The Sixth Extinction. She just wrote a book Under a White Sky: The Nature of the Future.. It’s about how we’ve altered nature so much, and are so trapped in relying on this, that there’s no way to go back to the good old days. At this point, any attempt to ‘go back’ amounts to going forward in another direction.

I’ll quote a bit:

Ezra Klein: Your book reads as an argument that we are past the point when we have the luxury of saying that things like geoengineering are off limits because we shouldn’t change the world that much. We’ve already changed it so much that the unthinkable now has to be thought.

Elizabeth Kolbert: I think that’s a reasonable interpretation. I think you could read it as, we are past the point of having that luxury. You could also read it as a species that has managed to muck up the atmosphere one way thinking about mucking up the atmosphere another way — what could possibly go wrong? I think those are both very valid readings.

Ezra Klein: You have a wonderful quote in the geoengineering chapter of your book from Andy Parker, who is a project director for the Solar Radiation Management Governance Initiative. He says, “We live in a world where deliberately dimming the [expletive] sun might be less risky than not doing it.” That feels like quite an indictment of the human race and where we’ve gotten ourselves to with all our knowledge and all our power.

Elizabeth Kolbert: I think that does sort of sum things up. We are in this very deep — there are only wrong answers, only hard choices at this point. Nothing easy from here on in.

Ezra Klein: What do you think of geoengineering?

Elizabeth Kolbert: I very consciously avoided coming down very clearly on that. But some very, very smart people are thinking about it and are very worried that it may be our best option at a certain point. And I think they may, unfortunately, be right — but wow, it’s dimming the [expletive] sun, you know?

Ezra Klein: I think how people feel about geoengineering depends on how they feel about the traditional political pathway. Do you think there is a significant chance that traditional politics are going to do enough to keep us under 2 degrees of warming?

Elizabeth Kolbert: Many, many scientists and many nations — especially the low-lying island nations that could disappear between here and 2 degrees — would say that’s really too high. So there’s a stretch goal, if you want, in the Paris accord of 1.5 degrees.

If you’re going to be honest about it, I think you have to say we’re basically at 1.5 degrees now. So that is not just a hard goal to reach; it’s getting to be almost geophysically impossible. Now, 2 degrees — presumably, it is still physically possible to do it.

Then that gets to the point you’re making: Is the world set up to do this? And the problem is not just that in the U.S. we are legislatively gridlocked — that, so far at least, we have been really incapable of taking significant action. And I do want to add, the U.S. is still the biggest single source of greenhouse gases that are up there in the atmosphere right now.

But then you have to look all around the world at all of the major players in this drama — China, which is now the single biggest emitter on an annual basis; the E.U., which is a very big emitter; India, which is increasingly a large emitter. So you have to ask, are we all going to get our act together?

Ezra Klein: One of the questions that I struggle with most in my own work right now is, what do you do if you believe that it is no longer politically plausible that normal politics will get to a reasonable outcome here? Sometimes I think about technological solutions — huge amounts of money being spent on not just renewables, but potentially studying things like geoengineering. Sometimes I wonder about things that are somewhere between political activism and extra-political. Where are you on this?

Elizabeth Kolbert: When we get into the “what could happen now owing to our failures,” that’s certainly where geoengineering comes in. A lot of very smart people are saying, look at the political system. It’s just not capable of moving fast enough. And the last 30 years are a pretty depressing proof of that.

And, as you say, you’re led either to a technofix or you’re led to a carbon dictatorship. I don’t know what you’re led to if you say, we just are incapable of moving fast enough under politics as they are. And the point, I think, that’s really important is on some level, it’s unknowable. How people will react all around the world, this is going to affect everyone. It’s going to affect some people much more brutally than others.


Consolidated Appropriations Act, 2021

22 December, 2020

You may not have noticed, but the US Congress just passed the biggest climate-related bill in long time, with measures to help save the ozone layer and speed progress on solar, wind and nuclear energy, battery storage and carbon capture. It’s big news, though it’s been overshadowed by the pandemic and resulting economic disaster. Everyone is focused on another portion of the 5593-page Consolidated Appropriations Act: namely, Division M, the Coronavirus Response and Relief Supplemental Appropriations Act.

This is important. We’ll get through this pandemic, though the US at least has been doing a bad job so far. Global warming will be a much tougher test of our resolve. So it’s good to see this step toward recognizing its gravity.

• Sarah Kaplan and Dino Grandoni, Stimulus deal includes raft of provisions to fight climate change, Washington Post, 21 December 2020.

In one of the biggest victories for U.S. climate action in a decade, Congress has moved to phase out a class of potent planet-warming chemicals and provide billions of dollars for renewable energy and efforts to suck carbon from the atmosphere as part of the $900 billion coronavirus relief package.

The legislation […] wraps together several bills with bipartisan backing and support from an unusual coalition of environmentalists and industry groups.

It will cut the use of hydrofluorocarbons (HFCs), chemicals used in air conditioners and refrigerators that are hundreds of times worse for the climate than carbon dioxide. It authorizes a sweeping set of new renewable energy measures, including tax credit extensions and new research and development programs for solar, wind and energy storage; funding for energy efficiency projects; upgrades to the electric grid and a new commitment to research on removing carbon from the atmosphere. And it reauthorizes an Environmental Protection Agency program to curb emissions from diesel engines.

The legislation also includes key language on the “sense of Congress” that the Energy Department must prioritize funding for research to power the United States with 100 percent “clean, renewable, or zero-emission energy sources” — a rare declaration that the nation should be striving toward net-zero carbon emissions.

“This is perhaps the most significant climate legislation Congress has ever passed,” said Grant Carlisle, a senior policy adviser at the Natural Resources Defense Council.

The HFC measure, which empowers the EPA to cut the production and use of HFCs by 85 percent over the next 15 years, is expected to save as much as half a degree Celsius of warming by the end of the century. Scientists say the world needs to constrain the increase in the average global temperature to less than 2 degrees Celsius compared with preindustrial times to avoid catastrophic, irreversible damage to the planet. Some places around the globe are already experiencing an average temperature rise beyond that threshold.

Advocates say the $35 billion of new funding for renewable technology and energy efficiency in the legislation will also help reduce pollution that is driving global warming and provide a much-needed boost to federal energy programs that haven’t been updated since 2007.

“It doesn’t have regulations or mandates in it,” Sasha Mackler, director of the energy project at the Bipartisan Policy Center, said of the energy package. “But from the bottom up it’s advancing the technology that’s needed. … This is definitely a bill that creates the enabling conditions for decarbonization.”

Support among lawmakers for the package suggests that tax incentives and research funding may be a rare area of common ground between two parties that have been divided on climate change.

Despite President Trump’s numerous efforts to roll back climate regulations, leading Republicans backed the package, which has been a top priority for Sen. Lisa Murkowski (R-Alaska) for years. Senators John Barrasso (R-Wyo.) and John Neely Kennedy (R-La.) helped craft the bipartisan agreement to scale down polluting refrigerants.

“These measures will protect our air while keeping costs down for the American people,” Barrasso, chair of the Senate Environment and Public Works Committee, said in a statement Monday.

Sen. Thomas R. Carper (D-Del.), an ally of President-elect Joe Biden and co-sponsor of the HFC provision, called it “a watershed moment” that bodes well for lawmakers interested in working with the incoming administration on climate change.

“The debate on whether climate change is real is over. It is real. It’s not getting better,” Carper said in a recent interview. “Our Republican colleagues, they get it, for the most part.”

The agreement comes on the heels of a major United Nations climate report, which found that nations’ current plans to reduce greenhouse gasses are just one-fifth of what’s needed to avoid catastrophic warming.

If leaders invest heavily in green infrastructure and renewable energy as part of coronavirus stimulus spending, the world could trim as much as 25 percent from its expected 2030 emissions, the U.N. report said.

Democrats and environmental groups say the legislation is not quite the sweeping “green stimulus” that’s needed. Though it meets Biden’s call to extend tax incentives for solar and wind generation and provide more money for clean energy research, it falls short of his requests for aggressive subsidies for electric vehicles and new requirements that utilities eliminate their contributions to global warming by 2035.

It also excludes a provision from earlier versions of the bill that would have set voluntary standards for energy efficiency in buildings — something that could significantly curb emissions from cities.

“Let’s be clear: Are these provisions enough to meet the demands of the science? No,” said Senate Minority Leader Charles E. Schumer (D-N.Y). “But are they a significant step in the right direction? Yes.”

The HFC rule lays the groundwork for the United States to sign onto the Kigali Amendment, an international agreement in which more than 100 nations committed to replacing the chemicals with refrigerants that have a smaller climate impact. Signed in the final days of the Obama administration, the treaty was never submitted by Trump for ratification by the Senate. By voting to curb the climate pollutant now, Congress has eased the path for approval once Biden takes office.

Included in the energy package are roughly $4 billion for solar, wind, hydropower and geothermal research and development; $1.7 billion to help low-income families install renewable energy sources in their homes; $2.6 billion for the Energy Department’s sustainable transportation program; and $500 million for research on reducing industrial emissions.

It also authorizes $2.9 billion for the Advanced Research Projects Agency-Energy, a program that funds high-risk, high-reward research and that Trump has sought to eliminate multiple times.

The increased funding is expected to make emerging clean-energy technology cheaper and more widespread. This is especially significant for ideas that have proved effective but are struggling to make the jump to commercial viability.

“This is an opportunity to not only make significant advances in climate action and reducing HFCs, but to help maintain leadership of U.S. technology and our competitiveness in that global market,” said Marty Durbin, an energy lobbyist at the U.S. Chamber of Commerce, the largest corporate lobbying group in Washington.

In a boon for renewable energy companies, Congress extended tax credits for wind and solar and introduced a new credit for offshore wind projects, which Heather Zichal, chief executive of the American Clean Power Association, called “America’s largest untapped clean energy source.” One Department of Energy analysis suggested that developing just 4 percent of the total U.S. offshore wind capacity could power some 25 million homes and reduce the nation’s greenhouse gas emissions by almost 2 percent.

But many green groups were critical of provisions dedicating more than $6 billion to efforts to remove carbon from the air and store it, as well as funding for enhanced oil recovery projects, which reuse carbon dioxide to flush residual oil from existing wells.

“It just perpetuates the fossil fuel system,” said Jean Su, an attorney and director of the energy justice program at the Center for Biological Diversity. “If you pass something like this, you’re not doing the best we can do in terms of transforming our energy system.”

Others see carbon capture as a necessary tool for mitigating emissions from sources that aren’t easily decarbonized, such as air travel. The bill directs the energy secretary to estimate “the magnitude of excess carbon dioxide” that needs to be removed from the air to stabilize the climate.

The legislation includes more than $11 billion for nuclear energy [….]


Ceres

18 December, 2020

On 11 December 2020, Ceres, a sustainability nonprofit that works with investors on climate change, announced that a consortium of 30 investors managing $9 trillion in assets have committed to investing to support the goal of net zero carbon emissions by 2050.

This is what the 30 investors signed:

The Net Zero Asset Managers Commitment

In line with the best available science on the impacts of climate change, we acknowledge that there is an urgent need to accelerate the transition towards global net zero emissions and for asset managers to play our part to help deliver the goals of the Paris Agreement and ensure a just transition.

In this context, my organisation commits to support the goal of net zero greenhouse gas (‘GHG’) emissions by 2050, in line with global efforts to limit warming to 1.5°C (‘net zero emissions by 2050 or sooner’). It also commits to support investing aligned with net zero emissions by 2050 or sooner.

Specifically, my organisation commits to:

a) Work in partnership with asset owner clients on decarbonisation goals, consistent with an ambition to reach net zero emissions by 2050 or sooner across all assets under management (‘AUM’).
b) Set an interim target for the proportion of assets to be managed in line with the attainment of net zero emissions by 2050 or sooner.
c) Review our interim target at least every five years, with a view to ratcheting up the proportion of AUM covered until 100% of assets are included.

In order to fulfil these commitments my organisation will:

For assets committed to be managed in line with the attainment of net zero emissions by 2050 or sooner (under commitment b)

1) Set interim targets for 2030, consistent with a fair share of the 50% global reduction in CO2 identified as a requirement in the IPCC special report on global warming of 1.5°C.
2) Take account of portfolio Scope 1 & 2 emissions and, to the extent possible, material portfolio Scope 3 emissions.
3) Prioritise the achievement of real economy emissions reductions within the sectors and companies in which we invest.
4) If using offsets, invest in long-term carbon removal, where there are no technologically and/or financially viable alternatives to eliminate emissions.
5) As required, create investment products aligned with net zero emissions by 2050 and facilitate increased investment in climate solutions.

Across all assets under management

6) Provide asset owner clients with information and analytics on net zero investing and climate risk and opportunity.
7) Implement a stewardship and engagement strategy, with a clear escalation and voting policy, that is consistent with our ambition for all assets under management to achieve net zero emissions by 2050 or sooner.
8) Engage with actors key to the investment system including credit rating agencies, auditors, stock exchanges, proxy advisers, investment consultants, and data and service providers to ensure that products and services available to investors are consistent with the aim of achieving global net zero emissions by 2050 or sooner.
9) Ensure any relevant direct and indirect policy advocacy we undertake is supportive of achieving global net zero emissions by 2050 or sooner.

Accountability

10) Publish TCFD disclosures, including a climate action plan, annually, and submit them to the Investor Agenda via its partner organisations for review to ensure the approach applied is based on a robust methodology, consistent with the UN Race to Zero criteria, and action is being taken in line with the commitments made here.

We recognise collaborative investor initiatives including the Investor Agenda and its partner organisations (AIGCC, CDP, Ceres, IGCC, IIGCC, PRI, UNEPFI), Climate Action 100+, Climate League 2030, Paris Aligned Investment Initiative, Science Based Targets Initiative for Financial Institutions, UN-convened Net-Zero Asset Owner Alliance, among others, which are developing methodologies and supporting investors to take action towards net zero emissions. We will collaborate with each other and other investors via such initiatives so that investors have access to best practice, robust and science based approaches and standardised methodologies, and improved data, through which to deliver these commitments.

We also acknowledge that the scope for asset managers to invest for net zero and to meet the commitments set forth above depends on the mandates agreed with clients and clients’ and managers’ regulatory environments. These commitments are made in the expectation that governments will follow through on their own commitments to ensure the objectives of the Paris Agreement are met, including increasing the ambition of their Nationally Determined Contributions, and in the context of our legal duties to clients and unless otherwise prohibited by applicable law. In some asset classes or for some investment strategies, agreed net zero methodologies do not yet exist. Where our ability to align our approach to investment with the goal of net zero emissions by 2050 is, today, constrained, we commit to embark with determination and ambition on a journey, and to challenge and seek to overcome the constraints we face.


US Environmental Policy (Part 2)

12 November, 2020

On his first day in office, President-elect Biden plans to have the US rejoin the Paris climate accord. He has also pledged to sign ten executive orders on his first day in office:

• Requiring aggressive methane pollution limits for new and existing oil and gas operations.

• Using the Federal government procurement system—which spends $500 billion every year—to drive towards 100% clean energy and zero-emissions vehicles.

• Ensuring that all U.S. government installations, buildings, and facilities are more efficient and climate-ready, harnessing the purchasing power and supply chains to drive innovation.

• Reducing greenhouse gas emissions from transportation—the fastest growing source of U.S. climate pollution—by preserving and implementing the existing Clean Air Act, and developing rigorous new fuel economy standards aimed at ensuring 100% of new sales for light- and medium-duty vehicles will be electrified and annual improvements for heavy duty vehicles.

• Doubling down on the liquid fuels of the future, which make agriculture a key part of the solution to climate change. Advanced biofuels are now closer than ever as we begin to build the first plants for biofuels, creating jobs and new solutions to reduce emissions in planes, ocean-going vessels, and more.

• Saving consumers money and reduce emissions through new, aggressive appliance- and building-efficiency standards.

• Committing that every federal infrastructure investment should reduce climate pollution, and require any federal permitting decision to consider the effects of greenhouse gas emissions and climate change.

• Requiring public companies to disclose climate risks and the greenhouse gas emissions in their operations and supply chains.

• Protecting biodiversity, slowing extinction rates and helping leverage natural climate solutions by conserving 30% of America’s lands and waters by 2030.

• Protecting America’s natural treasures by permanently protecting the Arctic National Wildlife Refuge and other areas impacted by President Trump’s attack on federal lands and waters, establishing national parks and monuments that reflect America’s natural heritage, banning new oil and gas permitting on public lands and waters, modifying royalties to account for climate costs, and establishing targeted programs to enhance reforestation and develop renewables on federal lands and waters with the goal of doubling offshore wind by 2030.

According to article in today’s Washington Post:

In a sign of how Biden has already elevated the issue, he discussed the topic with every European head of state with whom he spoke on Tuesday, including the leaders of Britain, France, Germany and Ireland. Biden has started frequently referring to the climate “crisis,” suggesting a heightened level of urgency.

A team of former Obama administration officials and experts have created a 300-page blueprint laying out a holistic approach to the climate while avoiding some of the pitfalls that hampered President Barack Obama, who shared some of the same goals but was unable to enact all of them. Dubbed the Climate 21 Project, it took a year and a half to develop and was delivered recently to Biden’s transition team. The document outlines how the incoming administration could restructure aspects of the government to move faster on global warming.

For more, see:

Climate 21 Project.


Compositional Game Theory and Climate Microeconomics

5 October, 2020

guest post by Jules Hedges

Hi all

This is a post I’ve been putting off for a long time until I was sure I was ready. I am the “lead developer” of a thing called compositional game theory (CGT). It’s an approach to game theory based on category theory, but we are now at the point where you don’t need to know that anymore: it’s an approach to game theory that has certain specific benefits over the traditional approach.

I would like to start a conversation about “using my powers for good”. I am hoping particularly that it is possible to model microeconomic aspects of climate science. This seems to be a very small field and I’m not really hopeful that anyone on Azimuth will have the right background, but it’s worth a shot. The kind of thing I’m imagining (possibly completely wrongly) is to create models that will suggest when a technically-feasible solution is not socially feasible. Social dilemmas and tragedies of the commons are at the heart of the climate crisis, and modelling instances of them is in scope.

I have a software tool (https://github.com/jules-hedges/open-games-hs) that is designed to be an assistant for game-theoretic modelling. This I can’t emphasise enough: A human with expertise in game-theoretic modelling is the most important thing, CGT is merely an assistant. (Right now the tool also probably can’t be used without me being in the loop, but that’s not an inherent thing.)

To give an idea what sort of things CGT can do, my 2 current ongoing research collaborations are: (1) a social science project modelling examples of institution governance, and (2) a cryptoeconomics project modelling an attack against a protocol using bribes. On a technical level the best fit is for Bayesian games, which are finite-horizon, have common knowledge priors, and private knowledge with agents who do Bayesian updating.

A lot of the (believed) practical benefits of CGT come from the fact that the model is code (in a high level language designed specifically for expressing games) and thus the model can be structured according to existing wisdom for structuring code. Really stress-testing this claim is an ongoing research project. My tool does equilibrium-checking for all games (the technical term is “model checker”), and we’ve had some success doing other things by looping an equilibrium check over a parameter space. It makes no attempt to be an equilibrium solver, that is left for the human.

This is not me trying to push my pet project (I do that elsewhere) but me trying to find a niche where I can do some genuine good, even if small. If you are a microeconomist (or a social scientist who uses applied game theory) and share the goals of Azimuth, I would like to hear from you, even if it’s just for some discussion.


How Scientists Can Fight COVID-19

31 March, 2020

A friend listed some calls for help:

• The UK urgently needs help from modellers. You must be willing to work on specified tasks and meet deadlines. Previous experience in epidemic modelling is not required.

https://epcced.github.io/ramp/

• MIT is having a “Beat the Pandemic” hackathon online April 3-5. You can help them develop solutions that address the most pressing technical, social, and financial issues caused by the COVID-19 outbreak:

https://covid19challenge.mit.edu/

• The COVID-19 National Scientist Volunteer Database Coordination Team is looking for scientists to help local COVID-19 efforts in the US:

https://docs.google.com/forms/d/e/1FAIpQLScXC56q2tPgz0WbPrhP7WareiclfxfaKQFI0ZbXg4FkKan5iQ/viewform

• The Real Time Epidemic datathon, which started March 30, is collective open source project for developing real-time and large-scale epidemic forecasting models:

https://www.epidemicdatathon.com/

• Crowdfight COVID-19 is a mailing list that sends lists of tasks for which help is needed:

https://crowdfightcovid19.org/volunteers (address not working when I last checked—maybe overloaded?)


Can We Fix The Air?

12 January, 2020

I published a slightly different version of this article in Nautilus on November 28, 2019.


Water rushes into Venice’s city council chamber just minutes after the local government rejects measures to combat climate change. Wildfires consume eastern Australia as fire danger soars past “severe” and “extreme” to “catastrophic” in parts of New South Wales. Ice levels in the Chukchi Sea, north of Alaska, hit record lows. England sees floods all across the country. And that’s just this week, as I write this.

Human-caused climate change, and the disasters it brings, are here. In fact, they’re just getting started. What will things be like in another decade, or century?

It depends on what we do. If our goal is to stop global warming, the best way is to cut carbon emissions now—to zero. The United Kingdom, Denmark, and Norway have passed laws requiring net zero emissions by 2050. Sweden is aiming at 2045. But the biggest emitters—China, the United States, and India—are dragging their heels. So to keep global warming below 2 degrees Celsius over pre-industrial levels by 2100, it’s becoming more and more likely that we’ll need negative carbon emissions:

That is, we’ll need to fix the air. We’ll need to suck more carbon dioxide out of the atmosphere than we put in.

This may seem like a laughably ambitious goal. Can we actually do it? Or is it just a fantasy? I want to give you a sense of what it would take. But first, here’s one reason this matters. Most people don’t realize that large negative carbon emissions are assumed in many of the more optimistic climate scenarios. Even some policymakers tasked with dealing with climate change don’t know this.

In 2016, climate scientists Kevin Anderson and Glen Peters published a paper on this topic, called “The trouble with negative emissions.” The title is a bit misleading, since they are not against negative emissions. They are against lulling ourselves into complacency by making plans that rely on negative emissions—because we don’t really know how to achieve them at the necessary scale. We could be caught in a serious bind, with the poorest among us taking the biggest hit.

So, how much negative carbon emissions do we need to stay below 2 degrees Celsius of warming, and how people are hoping to achieve them? Let’s dive in!

In 2018, humans put about 37 billion tonnes of carbon dioxide into the air. A “tonne” is a metric ton, a bit larger than a US ton. Since the oxygen is not the problem—carbon dioxide consisting of one atom of carbon and two of oxygen—it might make more sense to count tonnes of carbon. But it’s customary to keep track of carbon by its carbon dioxide equivalent, so I’ll do that here. The National Academy of Sciences says that to keep global warming below 2 degrees Celsius by the century’s end, we will probably need to be removing about 10 billion tonnes of carbon dioxide from the air each year by 2050, and double that by 2100. How could we do this?

Whenever I talk about this, I get suggestions. Many ignore the sheer scale of the problem. For example, a company called Climeworks is building machines that suck carbon dioxide out of the air using a chemical process. They’re hoping to use these gadgets to make carbonated water for soft drinks—or create greenhouses that have lots of carbon dioxide in the air, for tastier vegetables. This sounds very exciting…until you learn that currently their method of getting carbon dioxide costs about $500 per ton. It’s much cheaper to make the stuff in other ways; beverage-grade carbon dioxide costs about a fifth as much. But even if they bring down the price and become competitive in their chosen markets, greenhouses and carbonation use only 6 million tonnes of carbon dioxide annually. This is puny compared to the amount we need to remove.

Thus, the right way to think of Climeworks is as a tentative first step toward a technology that might someday be useful for fighting global warming—but only if it can be dramatically scaled up and made much cheaper. The idea of finding commercial uses for carbon dioxide as a stepping-stone, a way to start developing technologies and bringing prices down, is attractive. But it’s different from finding commercial uses that could make a serious dent in our carbon emissions problem.

Here’s another example: using carbon dioxide from the air to make plastics. There’s a company called RenewCO2 that wants to do this. But even ignoring the cost, it’s clear that such a scheme could remove 10 billion tonnes of carbon dioxide from the air each year only if we drastically ramped up our production of plastics. In 2018, we made about 360 million tonnes of plastic. So, we’d have to boost plastic production almost ten-fold. Furthermore, we’d have to make all this plastic without massively increasing our use of fossil fuels. And that’s a general issue with schemes to fix the air. If we could generate a huge abundance of power in a carbon-free way—say from nuclear, solar, or wind—we could use some of that power to remove carbon dioxide from the atmosphere. But for the short term, a better use of that power is to retire carbon-burning power plants. Thus, while we can dream about energy-intensive methods of fixing the air, they will only come into their own—if ever—later in the century.

If plastics aren’t big enough to eat up 10 billion tonnes of carbon dioxide per year, what comes closer? Agriculture. I’m having trouble finding the latest data, but in 2004 the world created roughly 5 billion tonnes of “crop residue”: stems, leaves, and such left over from growing food. If we could dispose of most of this residue in a way that would sequester the carbon, that would count as serious progress. Indeed, environmental engineer Stuart Strand and physicist Gregory Benford—also a noted science fiction writer—have teamed up to study what would happen if we dumped bales of crop residue on the ocean floor. Even though this stuff would rot, it seems that the gases produced will take hundreds of years to resurface. And there’s plenty of room on the ocean floor.

Short of a massive operation to sink crop residues to the bottom of the sea, there are still many other ways to improve agriculture so that the soil accumulates more carbon. For example, tilling the land less reduces the rate at which organic matter decays and carbon goes back into the air. You can actually fertilize the land with half-burnt plant material full of carbon, called “biochar.” Planting crops with bigger roots, or switching from annual crops to perennials, also helps. These are just a few of the good ideas people have had. While agriculture and soil science are complex, and you probably don’t want to get into the weeds on this, the National Academy of Sciences estimates that we could draw down 3 billion tonnes of carbon dioxide per year from improved agriculture. That’s huge.

Having mentioned agriculture, it’s time to talk about forests. Everyone loves trees. However, it’s worth noting that a mature forest doesn’t keep on pulling down carbon at a substantial rate forever. Yes, carbon from the air goes to form wood and organic material in the soil. But decaying wood and organic material releases carbon back into the air. A climax forest is close to a steady state: the rate at which it removes carbon from the air is roughly equal to the rate at which it releases this carbon. So, the time when a forest pulls down the most carbon is when it’s first growing.

In July 2019, a paper in Science argued that the Earth has room for almost 4 million square miles of new forests. The authors claimed that as these new trees grow, they could pull down about 730 billion tonnes of carbon dioxide.

At first this sounds great. But remember, we are putting out 37 billion tonnes a year. So, the claim is that if we plant new forests over an area somewhat larger than the US, they will absorb the equivalent of roughly 20 years of carbon emissions. In short, this heroic endeavor would buy us time, but it wouldn’t be a permanent solution. Worse, many other authors have argued that the Science paper was overly optimistic. One rebuttal points out that it mistakenly assumed treeless areas have no organic carbon in the soil already. It also counted on a large increase of forests in regions that are now grassland or savanna. With such corrections made, it’s possible that new forests could only pull down at most 150 billion tonnes of carbon dioxide.

That’s still a lot. But getting people to plant vast new forests will be hard. Working with more realistic assumptions, the National Academy of Sciences says that in the short term we could draw down 2.5 billion tonnes of carbon dioxide per year by planting new forests and better managing existing ones. In short: If we push really hard, better agriculture and forestry could pull 5.5 billion tonnes of carbon dioxide from the air each year. One great advantage of both these methods is that they harness the marvelous ability of plants to turn carbon dioxide into complex organic compounds in a solar-powered way—much better than any technology humans have devised so far. If we ever invent new technologies that do better, it’ll probably be because we’ve learned some tricks from our green friends.

And here’s another way plants can help: biofuels. If we burn fuels that come from plants, we’re taking carbon out of the atmosphere and putting it right back in: net zero carbon emissions, roughly speaking. That’s better than fossil fuels, where we dig carbon up from the ground and burn it. But it would be even better if we could burn plants as fuels but then capture the carbon dioxide, compress it, and pump it underground into depleted oil and gas fields, unmineable coal seams, and the like.

To do this, we probably shouldn’t cut down forests to clear space for crops that we burn. Turning corn into ethanol is also rather inefficient, though the corn lobby in the U.S. has persuaded the government to spend lots of money on this, and about 40 percent of all corn grown in the U.S. now gets used this way. Suppose we just took all available agricultural, forestry, and municipal waste, like lawn trimmings, food waste, and such, to facilities able to burn it and pump the carbon dioxide underground. All this stuff ultimately comes from plants sucking carbon from the air. So, how much carbon dioxide could we pull out of the atmosphere this way? The National Academy of Sciences says up to 5.2 billion tonnes per year.

Of course, we can’t do this and also sink all agricultural waste into the ocean—that’s just another way of dealing with the same stuff. Furthermore, this high-end figure would require immensely better organization than we’ve been able to achieve so far. And there are risks involved in pumping lots of carbon dioxide underground.

What other activities could draw down lots of carbon? It pays to look at the biggest human industries: biggest, that is, in terms of sheer mass being processed. For example, we make lots of cement. Global cement production in 2017 was about 4.5 billion tons, with China making more than the rest of the world combined, and a large uncertainty in how much they made. As far as I know, only digging up and burning carbon is bigger: for example, 7.7 billion tons of coal is being mined per year.

Right now cement is part of the problem: To make the most commonly used kind we heat limestone until it releases carbon dioxide and becomes “quicklime.” Only about 7 percent of the total carbon we emit worldwide comes from this process—but that still counts for more than the entire aviation industry. Some scientists have invented cement that absorbs carbon dioxide as it dries. It has not yet caught on commercially, but the pressure on the industry is increasing. If we could somehow replace cement with a substance made mostly of carbon pulled from the atmosphere, and do it in an economically viable way, that would be huge. But this takes us into the realm of technologies that haven’t been invented yet.

New technologies may in fact hold the key to the problem. In the second half of the century we should be doing things that we can’t even dream of yet. In the next century, even more so. But it takes time to perfect and scale up new technologies. So it makes sense to barrel ahead with what we can do now, then shift gears as other methods become practical. Merely waiting and hoping is not wise.

Totaling up some of the options I’ve listed, we could draw down 1 billion tonnes of carbon dioxide by planting trees, 1.5 billion by better forest management, 3 billion by better agricultural practices, and up to 5.2 billion by biofuels with carbon capture. This adds up to over 10 billion tonnes per year. It’s not nearly enough to cancel the 37 billion tonnes we’re dumping into the air each year now. But combined with strenuous efforts to cut emissions, we might squeak by, and keep global warming below 2 degrees Celsius.

Even if we try, we are far from guaranteed to succeed—Anderson and Peters are right to warn about this. But will we even try? This is more a matter of politics and economics than of science and technology. The engineer Saul Griffith said that dealing with global warming is not like the Manhattan Project—it’s like the whole of World War II but with everyone on the same side. He was half right: We are not all on the same side. Not yet, anyway. Getting leaders who are inspired by these huge challenges, rather than burying their heads in the sand, would be a big step in the right direction.