Structured Cospans and Petri Nets


This talk on structured cospans and Petri nets is the second of a two-part series, but it should be understandable on its own. The first part is on structured cospans and double categories.

I gave this second talk at the MIT Categories Seminar. People discussed the talk at the Category Theory Community Server.

You can see the slides here and watch a video here:

Structured cospans and Petri nets

Abstract. “Structured cospans” are a general way to study networks with inputs and outputs. Here we illustrate this using a type of network popular in theoretical computer science: Petri nets. An “open” Petri net is one with certain places designated as inputs and outputs. We can compose open Petri nets by gluing the outputs of one to the inputs of another. Using the formalism of structured cospans, open Petri nets can be treated as morphisms of a symmetric monoidal category—or better, a symmetric monoidal double category. We explain two forms of semantics for open Petri nets using symmetric monoidal double functors out of this double category. The first, an operational semantics, gives for each open Petri net a category whose morphisms are the processes that this net can carry out. The second, a “reachability” semantics, simply says what these processes can accomplish. This is joint work with Kenny Courser and Jade Master.

The talk is based on these papers:

• John Baez and Kenny Courser, Structured cospans.

• John Baez and Jade Master, Open Petri nets.

• Jade Master, Generalized Petri nets.

I’ve blogged about open Petri nets before, and these articles might be a good way to start learning about them:

Part 1: the double category of open Petri nets.

Part 2: the reachability semantics for open Petri nets.

Part 3: the free symmetric monoidal category on a Petri net.

You can use Markdown or HTML in your comments. You can also use LaTeX, like this: $latex E = m c^2 $. The word 'latex' comes right after the first dollar sign, with a space after it.

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.